[1]张自强, 赵宝荣, 张锐生, 等. 装甲防护技术基础[M]. 北京: 兵器工业出版社, 2000: 181-187. [2]王涛亮, 路 妍, 任凤章, 等. 低合金超高强度钢研究进展[J]. 金属热处理, 2015, 40(2): 13-18. Wang Taoliang, Lu Yan, Ren Fengzhang, et al. Research progress of low-alloy ultra-high strength steels[J]. Heat Treatment of Metals, 2015, 40(2): 13-18. [3]Crouch I G, Cimpoeru S J, Li H, et al. Armour steels[J]. The Science of Armour Materials, 2017(2): 67-70. [4]Atapek. Development of a new armor steel and its ballistic performance[J]. Defence Science Journal, 2013, 63(3): 271-277. [5]侯登义. 国外均质轧制装甲钢板的生产现状及发展方向[J]. 四川冶金, 2017, 39(1): 1-4. Hou Dengyi. Production status and development trend of homogeneous rolling armor plate oversea[J]. Sichuan Metallurgy, 2017, 39(1): 1-4. [6]刘志强, 王保华, 黄 鑫, 等. 亚温淬火温度对30CrMnSi 钢力学性能的影响[J]. 金属热处理, 2015, 40(6): 120-125. Liu Zhiqiang, Wang Baohua, Huang Xin, et al. Effect of subcritical quenching temperature on properties of 30CrMnSi steel[J]. Heat Treatment of Metals, 2015, 40(6): 120-125. [7]卢茜倩, 谷海容, 汪永国, 等. 亚温淬火对 960 MPa 级高强钢组织性能影响[C]//第十一届中国钢铁年会论文集. 2017: 1-7. [8]李召华, 王春净, 罗湘燕. 30CrMnSiA 钢的最终热处理工艺研究[J]. 新技术新工艺, 2017(10): 1-3. [9]罗晓东, 张丽萍, 蒋月月. 亚温淬火工艺对EH47船板钢组织和性能的影响[J]. 热加工工艺, 2019, 48(4): 240-244. Luo Xiaodong, Zhang Liping, Jiang Yueyue. Effects of subcritical quenching process on microstructure and mechanical properties of EH47 ship plate steel[J]. Hot Working Technology, 2019, 48(4): 240-244. [10]徐 洲, 赵连城. 金属固态相变原理[M]. 北京: 科学出版社, 2004. [11]崔占全, 王昆林, 吴 润. 金属学与热处理[M]. 北京: 北京大学出版社, 2010. [12]周培山, 杨 笠. 10CrMnMo双相钢在不同亚温淬火温度下的微观组织[J]. 金属热处理, 2017, 42(4): 110-114. Zhou Peishan, Yang Li. Microstructure of 10CrMnMo dual-phase steel at different subcritical quenching temperatures[J]. Heat Treatment of Metals, 2017, 42(4): 110-114. [13]杜 凯, 张忠和, 陈 炜, 等. 亚温淬火工艺对25Cr2Ni3Mo钢力学性能的影响[J]. 热处理技术与装备, 2016, 37(3): 37-40. Du Kai, Zhang Zhonghe, Chen Wei, et al. Effect of subthermal quenching process on mechanical properties of 25Cr2Ni3Mo steel[J]. Heat Treatment Technology and Equipment, 2016, 37(3): 37-40. [14]唐明华, 汪新衡, 赵建明. 26CrMoNbTiB 钻杆用钢亚温淬火强韧化工艺[J]. 金属热处理, 2018, 43(5): 184-188. Tang Minghua, Wang Xinheng, Zhao Jianming. Intercritical quenching process of 26CrMoNbTiB drill pipe steel for strengthening and toughening[J]. Heat Treatment of Metals, 2018, 43(5): 184-188. [15]苑淑敏, 辛士进, 吴洪海. 热处理工艺对20CrMnMo钢组织与性能的影响[J]. 兵器材料科学与工程, 2010, 33(5): 94-95. Yuan Shumin, Xin Shijin, Wu Honghai. Effect of heat treatment process on microstructure and properties of 20CrMnMo steel[J]. Ordnance Metal Science and Engineering, 2010, 33(5): 94-95. [16]康 健,袁 国,王国栋. 亚温淬火下组织形态对高强低合金钢冲击韧性的影响[J].材料热处理学报, 2015, 36(12):152-157. Kang Jian, Yuan Guo, Wang Guodong.Effect of microstructure under sub-thermal quenching on impact toughness of high-strength and low-alloy steels[J]. Heat Treatment of Metals, 2015, 36(12): 152-157. [17]马跃新, 周子年. 30CrMnSiA 钢亚温淬火工艺研究[J]. 热加工工艺, 2009, 38(8): 151-153. Ma Yuexin, Zhou Zinian. Research on sub-temperature quenching process of 30CrMnSiA steel[J]. Hot Working Technology, 2009, 38(8): 151-153. [18]覃展鹏, 王红鸿, 童 志, 等. 亚温淬火工艺对低碳低合金高强钢组织及性能的影响[J]. 材料热处理学报, 2017, 38(9): 142-147. Zhang Zhanpeng, Wang Honghong, Tong Zhi, et al. Influence of lamellarizing process on microstructure and properties of low carbon low alloy high-strength steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(9): 142-147. [19]崔世海, 韩建民, 李卫京, 等. 双相热处理20MnSi钢的强化机理[J]. 钢铁研究学报, 2005, 17(4): 65-67. Cui Shihai, Han Jianmin, Li Weijing, et al. Strengthening mechanism of dual-phase heat treatment of 20MnSi steel[J]. Journal of Iron and Steel Research, 2005, 17(4): 65-67. |