[1]赵 雯, 岳晓丽, 陈慧敏, 等. 42CrMo钢调质处理后力学性能的预测[J]. 金属热处理, 2017, 42(7): 158-162. Zhao Wen, Yue Xiaoli, Chen Huimin, et al. Prediction of mechanical properties of 42CrMo steel after quenching and tempering treatment[J]. Heat Treatment of Metals, 2017, 42(7): 158-162. [2]陈 康, 左秀荣, 李 源, 等. 调质处理对低碳微合金钢组织与力学性能的影响[J]. 金属热处理, 2014, 39(9): 5-9. Chen Kan, Zuo Xiurong, Li Yuan, et al. Effects of quenching and tempering on microstructure and mechanical properties of low-carbon microalloyedsteel[J]. Heat Treatment of Metals, 2014, 39(9): 5-9. [3]王明娣, 刘东权, 武会宾. 淬火工艺对低合金耐磨钢组织与力学性能的影响[J]. 金属热处理, 2018, 43(8): 156-161. Wang Mingdi, Liu Dongquan, Wu Huibin. Influence of quenching on microstructure and mechanical properties of low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2018, 43(8): 156-161. [4]李亚欣, 刘雅政, 周乐育, 等. 石油套管淬火冷却中三维耦合场的有限元模拟[J]. 材料热处理学报, 2011, 32(1): 155-161. Li Yaxin, Liu Yazheng, Zhou Leyu, et al. FEM simulation of 3-dimensional coupled field for oil casing in quenching process[J]. Transactions of Materials and Heat Treatment, 2011, 32(1): 155-161. [5]沈 智, 陈 华, 张艳姝, 等. 300M钢制起落架锻后热处理工艺数值模拟[J]. 金属热处理, 2017, 42(6): 185-190. Shen Zhi, Chen Hua, Zhang Yanshu, et al. Numerical simulation of post-forging heat treatment process for 300M steel aircraft undercarriage[J]. Heat Treatment of Metals, 2017, 42(6): 185-190. [6]龚雪婷, 武志广, 李 鑫, 等. 2.25Cr1Mo钢大型锻件热处理工艺数值模拟[J]. 金属热处理, 2019, 44(3): 192-197. Gong Xueting, Wu Zhiguang, Li Xin,et al. Numerical simulation on heat treatment process of 2.25Cr1Mo steel large forgings[J]. Heat Treatment of Metals, 2019, 44(3): 192-197. [7]郝震宇, 汪开忠, 胡芳忠, 等. 淬火介质对不同规格42CrMo钢组织及性能的影响[J]. 安徽冶金, 2016(4): 15-19. Hao Zhenyu, Wang Kaizhong, Hu Fangzhong, et al. Effect of quenching medium on microstructure and mechanical properties of 42CrMo steel of different specifications[J]. Anhui Metallurgy, 2016(4): 15-19. [8]汪正兵, 阮瑞杰, 米艳军, 等. 42CrMo钢齿圈毛坯的水-空交替控时淬火工艺[J]. 金属热处理, 2019, 44(9): 169-173. Wang Zhengbing, Ruan Ruijie, Mi Yanjun, et al. Water-air alternative timed quenching process of 42CrMo steel gear ring blank[J]. Heat Treatment of Metals, 2019, 44(9): 169-173. [9]任基重. 热处理中非稳态传热过程的计算方法[J]. 金属热处理, 1988, 11(1): 3-7. Ren Jizhong. The calculation method of heat transfer process under unstable state in heat treatment[J]. Heat Treatment of Metals, 1988, 11(1): 3-7. [10]杨跃辉, 蔡庆伍, 武会宾, 等. 两相区热处理工艺对9Ni钢性能的影响[J]. 材料热处理学报, 2009, 30(3): 94-97. Yang Yuehui, Cai Qingwu, Wu Huibin, et al. Effect of quenching, lamellarizing and tempering process on properties of 9Ni steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(3): 94-97. [11]Wang Xiaoli, Meng Qingshuai, Wang Zhou, et al. Prediction of the surface characteristic of 42CrMo after spot continual induction hardening based on a novel co-simulation method[J]. Surface and Coatings Technology, 2019, 357: 252-266. [12]Yang Junpeng, Cai Qi, Ma Zongqing, et al. Effect of W addition on phase transformation and microstructure of powder metallurgic Ti-22Al-25Nb alloys during quenching and furnace cooling[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1343-1351. [13]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Materialia, 1959, 7(1): 59-60. [14]Zhang Xing, Tang Jinyuan, Zhang Xuerui. An optimized hardness model for carburizing-quenching of low carbon alloy steel[J]. Journal of Central South University, 2017, 24(1): 9-16. |