[1]Kostrivas A, Lippold J C. Weldability of Li-bearing aluminium alloys[J]. International Materials Reviews, 1999, 44(6): 217-237. [2]Rajendran V, Kumaran S M, Jayakumar T, et al. Microstructure and ultrasonic behavior on thermal heat treated Al-Li 8090 alloy[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 147-153. [3]Nayan N, Murty S V S N, Jha A K, et al. Processing and characterization of Al-Cu-Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique[J]. Materials Science and Engineering A, 2013, 576: 21-28. [4]Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. [5]周昌荣, 潘青林, 朱朝明, 等. 新型铝锂合金的研究和发展[J]. 材料导报, 2004, 18(5): 30-32. Zhou Changrong, Pan Qinglin, Zhu Chaoming, et al. Development and study of new types aluminum-lithium alloys[J]. Materials Review, 2004, 18(5): 30-32. [6]王大勇, 冯吉才, 许 威. 热处理对Al-Li-Cu合金TIG焊接头组织及力学性能的影响[J]. 焊接学报, 2003, 24(6): 23-25, 50. Wang Dayong, Feng Jicai, Xu Wei. Effect of heat treatment on microstructures and mechanical properties of Al-Li-Cu alloy TIG welded joint[J]. Transactions of the China Welding Institution, 2003, 24(6): 23-25, 50. [7]冯朝辉, 钟立伟, 高文理, 等. 时效制度对2050铝锂合金力学性能及断裂行为的影响[J]. 金属热处理, 2019, 44(9): 108-112. Feng Zhaohui, Zhong Liwei, Gao Wenli, et al. Effect of aging on mechanical properties and fracture behavior of 2050 Al-Li alloy[J]. Heat Treatment of Metals, 2019, 44(9): 108-112. [8]Schneider J A, Nunes A C J, Chen P S, et al. TEM study of the FSW nugget in AA2195-T81[J]. Journal of Materials Science, 2005, 40(16): 4341-4345. [9]Kumar K S, Brown S A, Pickens J R. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy[J]. Acta Materialia, 1996, 44(5): 1899-1915. [10]Fu B L, Qin G L, Meng X M, et al. Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser[J]. Materials Science and Engineering A, 2014, 617: 1-11. [11]张新明, 谢 磊, 叶凌英, 等. 时效制度对2A97铝锂合金晶粒细化和超塑性的影响[J]. 金属热处理, 2014, 39(2): 88-93. Zhang Xinming, Xie Lei, Ye Lingying, et al. Effect of aging treatment on grain refinement and superplasticity of 2A97 aluminum-lithium alloy[J]. Heat Treatment of Metals, 2014, 39(2): 88-93. [12]Tsivoulas D, Robson J D. Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys[J]. Acta Materialia, 2015, 93: 73-86. [13]Chen A T, Peng Y, Zhang L, et al. Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment[J]. Materials Characterization, 2016, 114: 234-242. [14]Lin Y, Lu C G, Wei C Y, et al. Effect of aging treatment on microstructures, tensile properties and intergranular corrosion behavior of Al-Cu-Li alloy[J]. Materials Characterization, 2018, 141: 163-168. [15]Dorin T, Deschamps A, De Geuser F, et al. Quantitative description of the T1 formation kinetics in an Al-Cu-Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy[J]. Philosophical Magazine, 2014, 94(10): 1012-1030. [16]Prasad N E, Gokhale A, Wanhill R J H. Aluminum-Lithium Alloys: Processing, Properties and Applications[M]. Oxford: Butterworth-Heinemann, 2013. [17]Rodak K, Urbańczyk-Gucwa A, Jabńońska M, et al. Influence of heat treatment on the formation of ultrafine-grained structure of Al-Li alloys processed by SPD[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 331-337. [18]Singh V, Prasad K S, Gokhale A A. Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate[J]. Scripta Materialia, 2004, 50(6): 903-908. |