[1]刘 慧, 孙 杰, 房洪杰, 等. 微量Ce对7B04铝合金组织性能的影响[J]. 金属热处理, 2018, 43(10): 31-35. Liu Hui, Sun Jie, Fang Hongjie, et al. Effect of trace Ce on microstructure and properties of 7B04 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(10): 31-35. [2]徐雪芳, 王春华. 钪含量对7050铝合金组织与力学性能的影响[J]. 金属热处理, 2018, 43(9): 6-9. Xu Xuefang, Wang Chunhua. Effect of Sc content on microstructure and mechanical properties of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(9): 6-9. [3]闫 华, 李 亨, 司 媛, 等. 微量Sc、Zr及形变热处理对Al-Mg-Si合金组织与性能的影响[J]. 金属热处理, 2017, 42(11): 7-13. Yan Hua, Li Heng, Si Yuan, et al. Effect of micro Sc, Zr and thermomechanical treatment on microstructure and properties of Al-Mg-Si alloy[J]. Heat Treatment of Metals, 2017, 42(11): 7-13. [4]Heczel A, Kawasaki M, Lábár J L, et al. Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion[J]. Journal of Alloys and Compounds, 2017, 711: 143-154. [5]Chen M C, Hsieh H C, Wu W. The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. Journal of Alloys and Compounds, 2006, 416(1/2): 169-172. [6]Skiba J, Kulczyk M, Pachla W, et al. Effect of severe plastic deformation realized by hydrostatic extrusion on heat transfer in CP Ti grade 2 and 316L austenitic stainless steel[J]. Journal of Nanomedicine and Nanotechnology, 2018, 9(4): 1000511. [7]Jia H, Bjørge R, Cao L, et al. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy[J]. Acta Materialia, 2018, 155: 199-213. [8]Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912-915. [9]Panigrahi S K, Jayaganthan R. A study on the mechanical properties of cryorolled Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 2008, 480(1): 299-305. [10]Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys[J]. Advanced Materials, 2010, 18(17): 2280-2283. [11]Shanmugasundaram T, Murty B S, Sarma V S. Development of ultrafine grained high strength Al-Cu alloy by cryorolling[J]. Scripta Materialia, 2006, 54(12): 2013-2017. [12]Deng Yanjun, Huang Guangjie, Cao Lingfei, et al. Improvement ofstrength and plasticity of Al-Cu-Li alloy by cold rolling and aging at low temperature[J]. Transactions of Nonferrous Metals Society of China, 2017(27): 1927. [13]Krishna N Naga, Sivaprasad K, Susila P. Strengthening mechanism of in-situ composite of ultra-high strength Al-4%Cu-3%TiB2 rolled at low temperature[J]. Transactions of Nonferrous Metals Society of China, 2014(3): 641-647. [14]许艳飞, 王 章, 肖逸锋, 等. 低温轧制对生物医用Ti-25Nb-10Ta-1Zr-0.2Fe合金组织和性能的影响[J]. 材料热处理学报, 2017, 38(8): 14-20. Xu Yanfei, Wang Zhang, Xiao Yifeng, et al. Effect of low temperature rolling on microstructure and properties of biomedical Ti-25Nb-10Ta-1Zr-0.2Fe alloy[J]. Transactions of Materials and Heat Treatment, 2017, 38(8): 14-20. |