[1]赵永庆. 我国创新研制的主要船用钛合金及其应用[J]. 中国材料进展, 2014, 33(7): 398-404. Zhao Yongqing. The new main titanium alloys used for shipbuilding developed in China and their applications[J]. Materials China, 2014, 33(7): 398-404. [2]于振涛, 余 森, 程 军, 等. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264. Yu Zhentao, Yu Sen, Cheng Jun, et al. Development and application of novel biomedical titanium alloy materials[J]. Acta Metallurgica Sinica, 2017, 53(10): 1238-1264. [3]Cordeiro J M, Barão V A R. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?[J]. Materials Science and Engineering: C, 2017, 71: 1201-1215. [4]Nayan N, Singh G, Prabhu T A, et al. Cryogenic mechanical properties of warm multi-pass caliber-rolled fine-grained titanium alloys: Ti-6Al-4V (normal and ELI grades) and VT14[J]. Metallurgical and Materials Transactions A, 2018, 49(1): 128-146. [5]王 雷, 王 琨, 李艳青, 等. TC4ELI钛合金低周疲劳性能研究[J]. 钛工业进展, 2018, 35(2): 17-21. Wang Lei, Wang Kun, Li Yanqing, et al. Low cycle fatigue properties of TC4ELI titanium alloy[J]. Titanium Industry Progress, 2018, 35(2): 17-21. [6]梁恩泉, 黄森森, 马英杰, 等. Fe对Ti-6Al-4V ELI合金力学性能的影响[J]. 材料研究学报, 2016, 30(4): 299-306. Liang Enquan, Huang Sensen, Ma Yingjie, et al. The Influence of Fe on the mechanical properties of Ti-6Al-4V ELI alloy[J]. Chinese Journal of Materials Research, 2016, 30(4): 299-306. [7]Ao Ni, Liu Daoxin, Liu Chengsong, et al. Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior[J]. Materials Characterization, 2018, 145: 527-533. [8]Attallah M M, Zabeen S, Cernik R J, et al. Comparative determination of the α/β phase fraction in α+ β-titanium alloys using X-ray diffraction and electron microscopy[J]. Materials Characterization, 2009, 60(11): 1248-1256. [9]Ahmed T, Rack H J. Phase transformations during cooling in α+ β titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1/2): 206-211. [10]Ren Yu, Xue Zhiyong, Luo Wenbo, et al. Effect of shock stress amplitude on the post-shock mechanical response and substructural evolution of Ti-6Al-4V alloy[J]. Mechanics of Materials, 2018, 117: 1-8. [11]Dabrowski R. Investigations of α+β→β phase transformation in monotonically heated Ti6Al7Nb alloy/badania przemiany fazowej α+β→β W stopie Ti6Al7Nb przy nagrzewaniu ciaglym[J]. Archives of Metallurgy and Materials, 2012, 57(4): 995-1000. [12]Shao Hui, Zhao Yongqing, Ge Peng, et al. Influence of cooling rate and aging on the lamellar microstructure and fractography of TC21 titanium alloy[J]. Metallography, Microstructure, and Analysis, 2013(2): 35-41. [13]Motyka M, Baran-Sadleja A, Sieniawski J, et al. Decomposition of deformed α′(α″) martensitic phase in Ti-6Al-4V alloy[J]. Materials Science and Technology, 2019, 35(3): 260-272. [14]Phani M K, Kumar A, Jayakumar T, et al. Mapping of elasticity and damping in an α+ β titanium alloy through atomic force acoustic microscopy[J]. Beilstein Journal of Nanotechnology, 2015, 6(1): 767-776. [15]Shahriyari F, Taghiabadi R, Razaghian A, et al. Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy[J]. Journal of Manufacturing Processes, 2018, 31: 776-786. [16]朱宝辉, 蔡国帅, 李永林, 等. 热处理工艺对TC4合金冷轧管材组织及性能的影响[J]. 金属热处理, 2018, 43(4): 162-166. Zhu Baohui, Cai Guoshuai, Li Yonglin, et al. Influence of heat treatment process on microstructure and mechanical properties of TC4 titanium alloy cold rolled tube[J]. Heat Treatment of Metals, 2018, 43(4): 162-166. [17]莱茵斯 C, 皮特尔斯 M. 钛与钛合金[M]. 陈振华, 译. 北京: 化学工业出版社, 2005: 2. [18]Feng Zhongxue, Yang Yingxiang, Xu Zhichao, et al. Effect of martensitic transformation on elastic modulus anisotropy of Ti-6Al-4V alloy[EB/OL]. Materials Research, 2018, 21(4): e20180197[2019-03-06]. https: //dx. doi. org/10. 1590/1980-5373-mr-2018-0197. DOI: 10. 1590/1980-5373-mr-2018-0197. [19]Ashton P J, Jun T S, Zhang Z, et al. The effect of the beta phase on the micromechanical response of dual-phase titanium alloys[J]. International Journal of Fatigue, 2017, 100: 377-387. [20]Wang Pan, Wu Lihong, Feng Yan, et al. Microstructure and mechanical properties of a newly developed low Young's modulus Ti-15Zr-5Cr-2Al biomedical alloy[J]. Materials Science and Engineering: C, 2017, 72: 536-542. [21]Katzarov I, Malinov S, Sha W. Finite element modeling of the morphology of β to α phase transformation in Ti-6Al-4V alloy[J]. Metallurgical and Materials Transactions A, 2002, 33(4): 1027-1040. [22]王松茂, 白新房, 朱 波, 等. 钛合金相变点概述[J]. 西安文理学院学报(自然科学版), 2017, 20(4): 92-96. Wang Songmao, Bai Xinfang, Zhu Bo, et al. Discussion on the transformation point of titanium alloy[J]. Journal of Xi’an University (Natural Science Edition), 2017, 20(4): 92-96. [23]Sieniawski J, Ziaja W, Kubiak K, et al. Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys[C]//Titanium Alloys-Advances in Properties Control, 2016: 69-80. |