[1]王雨丝, 夏家群, 和浩浩, 等. 600 MW超临界火力发电机组锅炉效率分析[J]. 工业加热, 2016, 45(1): 5-8. Wang Yusi, Xia Jiaqun, He Haohao, et al. Boiler efficiency analysis of 600 MW supercritical thermal power unit[J]. Industrial Heating, 2016, 45 (1): 5-8. [2]杨勇平, 杨志平, 徐 钢, 等. 中国火力发电能耗状况及展望[J]. 中国电机工程学报, 2013, 33(23): 1-8. Yang Yongping, Yang Zhiping, Xu Gang, et al. Energy consumption status and prospect of thermal power generation in China[J]. Chinese Journal of Electrical Engineering, 2013, 33 (23): 1-8. [3]宁保群, 刘永长, 殷红旗, 等. 超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景[J]. 材料导报, 2006, 20(12): 83-86. Ning Baoqun, Liu Yongchang, Yin Hongqi, et al. Development status and research prospect of ferritic heat-resistant steel for boiler tube of ultra-high critical pressure power plant[J]. Material Guide, 2006, 20 (12): 83-86. [4]Dudziak T, Lkaszewicz M, Simms N, et al. Steam oxidation of TP347HFG, super 304H and HR3C-analysis of significance of steam flowrate and specimen surface finish[J]. Corrosion Engineering, Science and Technology, 2014, 50(4): 272-282. [5]许 航, 李玉平, 方旭东, 等. HR3C耐热钢在高温蠕变过程中微观组织演变分析[J]. 热加工工艺, 2017(6): 107-111. Xu Hang, Li Yuping, Fang Xudong, et al. Microstructure evolution analysis of HR3C heat resistant steel during high temperature creep[J]. Hot Working Technology, 2017(6): 107-111. [6]李 君, 吴少华, 李振中. 超超临界燃煤发电技术是我国目前发展洁净煤发电技术的优先选择[J]. 中国电力, 2004, 37(9): 30-35. Li Jun, Wu Shaohua, Li Zhenzhong. Ultra supercritical coal-fired power generation technology is the priority for the development of clean coal power generation technology in China[J]. China Electric Power, 2004, 37 (9): 30-35. [7]王敬忠, 刘正东, 包汉生, 等. 中国超超临界电站锅炉关键材料用钢及合金的研究现状[J]. 钢铁, 2015, 50(8): 1-6. Wang Jingzhong, Liu Zhengdong, Bao Hansheng, et al. Research status of steel and alloy for key materials of ultra supercritical power station boiler in China[J]. Iron and Steel, 2015, 50 (8): 1-6. [8]高秋志, 张旦天, 刘家泳, 等. 高Cr铁素体耐热钢连续冷却相变行为[J]. 材料热处理学报, 2011, 32(9): 67-71. Gao Qiuzhi, Zhang Dantian, Liu Jiayong, et al. Continuous cooling transformation behavior of high Cr ferritic heat-resistant steel[J]. Transactions of Material and Heat Treatment, 2011, 32 (9): 67-71. [9]聂 铭, 于在松, 周荣灿. 2.25Cr-1.6W(T23)铁素体耐热钢服役过程中的组织演变研究[J]. 压力容器, 2011, 28(6): 1-4. Nie Ming, Yu Zaisong, Zhou Rongcan. Study on the microstructure evolution of 2.25cr-1.6w (T23) ferritic heat-resistant steel in service[J]. Pressure Vessel, 2011, 28 (6): 1-4. [10]Li H Y, Wei D D, Hu J D, et al. Constitutive modeling for hot deformation behavior of T24 ferritic steel[J]. Computational Materials Science, 2012, 53(1): 425-430.
[11]Fan Z Q, Hao T, Zhao S X, et al. The microstructure and mechanical properties of T91 steel processed by ECAP at room temperature[J]. Journal of Nuclear Materials, 2013, 434(1-3): 417-421. [12]Chiu Y T, Lin C K, Wu J C. High-temperature tensile and creep properties of a ferritic stainless steel for interconnect in solid oxide fuel cell[J]. Journal of Power Sources, 2011, 196(4): 2005-2012. [13]岳增武, 李辛庚. 喷丸处理提高奥氏体耐热钢抗氧化性能的研究及应用[J]. 材料热处理学报, 2013, 34(1): 157-162. Yue Zengwu, Li Xingeng. Study and application of shot peening to improve the oxidation resistance of austenitic heat-resistant steel[J]. Journal of Material Heat Treatment, 2013, 34 (1): 157-162. [14]谭 威, 季根顺, 张建斌, 等. 节镍奥氏体不锈钢加热过程中γ→δ转变的原位观察[J]. 材料热处理学报, 2011, 32(10): 90-95. Tan Wei, Ji Genshun, Zhang Jianbin, et al. In situ observation of γ - δ transformation during heating of nickel saving austenitic stainless steel[J]. Journal of Material Heat Treatment, 2011, 32 (10): 90-95. [15]王 斌, 刘正东, 程世长, 等. 固溶处理工艺对HR3C奥氏体耐热钢组织和性能的影响[J]. 机械工程材料, 2014, 38(6): 25-30. Wang Bin, Liu Zhengdong, Cheng Shichang, et al. Effect of solution treatment process on microstructure and properties of HR3C austenitic heat resistant steel[J]. Mechanical Engineering Materials, 2014, 38 (6): 25-30. |