[1]Spigarelli S, Quadrini E. Analysis of the creep behaviour of modified P91 (9Cr-1Mo-NbV) welds[J]. Materials and Design, 2002, 23(6): 547-552.
[2]Jones W B, Hills C R, Polonis D H. Microstructural evolution of modified 9Cr-1Mo steel[J]. Metallurgical Transactions A, 1991, 22(5): 1049-1058.
[3]杨华春, 屠 勇. P91钢管特殊性能试验研究[J]. 压力容器, 2004, 21(3): 6-10.
Yang Huachun, Tu Yong. Experimental investigation on special performance of P91 steel pipe[J]. Pressure Vessel Technology, 2004, 21(3): 6-10.
[4]李益民, 史志刚, 蔡连元, 等. P91主蒸汽管道高硬度和低硬度焊缝性能研究[J]. 热力发电, 2007, 36(5): 89-91.
Li Yimin, Shi Zhigang, Cai Lianyuan, et al. Study on performance of high hardness and low hardness weld joints on P91 main steam pipe[J]. Thermal Power Generation, 2007, 36(5): 89-91.
[5]崔雄华, 郑坊平, 谢继旭, 等. P91主蒸汽管道硬度偏低问题的试验分析与恢复[J]. 电力设备, 2007, 8(12): 31-34.
Cui Xionghua, Zheng Fangping, Xie Jixu, et al. Experimental analysis and comeback of lower hardness problem of P91 main steam pipe[J]. Electrical Equipment, 2007, 8(12): 31-34.
[6]高立新, 李炜丽, 侯小龙, 等. P91钢高温蒸汽管道低硬度对其理化性能的影响[J]. 华北电力技术, 2015(7): 37-43.
Gao Lixin, Li Weili, Hou Xiaolong, et al. Effects of low hardness on the physical properties of high temperature steam pipe of P91 steel[J]. North China Electric Power, 2015(7): 37-43.
[7]杨 超, 汤淳坡, 龚宏强, 等. 低硬度P91管件的安全性评价及寿命预测[J]. 中国电力, 2017, 50(8): 82-86.
Yang Chao, Yang Chunbo, Gong Hongqiang, et al. Safety evaluation and lifespan prediction of low hardness P91 pipes[J]. Electric Power, 2017, 50(8): 82-86.
[8]陈 军. P91钢管道硬度低的分析及处理[J]. 价值工程, 2015(14): 134-135.
Chen Jun. Analysis processing of low hardness P91 steel pipeline[J]. Value Engineering, 2015(14): 134-135.
[9]Zhang X, Zeng Y, Cai W, et al. Study on the softening mechanism of P91 steel[J]. Materials Science and Engineering A, 2018, 728: 63-71.
[10]Paul V T, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures[J]. Journal of Nuclear Materials, 2008, 378(3): 273-281.
[11]Peng Z F, Liu S, Yang C, et al. The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550 ℃[J]. Acta Materialia, 2018, 143: 141-155.
[12]Paul V T, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures[J]. Journal of Nuclear Materials, 2008, 378(3): 273-281.
[13]张红军, 刘树涛, 范长信. 国产P91钢在蠕变过程中微观组织和性能的变化[J]. 中国电力, 2007, 40(7): 12-16.
Zhang Hongjun, Liu Shutao, Fan Changxin. Variation in microstructure and performance during the creep of domestic P91 steel[J]. Electric Power, 2007, 40(7): 12-16.
[14]Panait C G, Bendick W, Fuchsmann A, et al. Study of the microstructure of the Grade 91 steel after more than 100 000 h of creep exposure at 600 ℃[J]. International Journal of Pressure Vessels and Piping, 2010, 87(6): 326-335.
[15]王卫泽, 王 钥, 朱月梅, 等. 我国P91/T91钢生产及其性能的现状与进展[J]. 机械工程材料, 2010, 34(6): 6-9.
Wang Weize, Wang Yue, Zhu Yuemei, et al. Research status and advances of manufacture and properties of P91/T91 steel in China[J]. Materials for Mechanical Engineering, 2010, 34(6): 6-9.
[16]汪建光. P91材料硬度低的处理方案及建议[J]. 化学工程与装备, 2014(9): 161-163.
Wang Jianguang. Treatment plan and suggestion for low hardness of P91 material[J]. Chemical Engineering and Equipment, 2014(9): 161-163. |