[1]邵成伟. 高强塑积含铝中锰钢组织调控及氢脆敏感性研究[D]. 北京: 北京交通大学, 2018. [2]Zhao J W, Jiang Z Y. Thermo-mechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [3]韩志勇, 张明达, 徐海峰, 等. 高性能汽车钢组织性能特点及未来研发方向[J]. 钢铁, 2016, 51(2): 1-9. Han Zhiyong, Zhang Mingda, Xu Haifeng, et al. Research and application of high performance automobile steel[J]. Iron and Steel, 2016, 51(2): 1-9. [4]安柯宇, 梁佳敏, 幸非凡, 等. 第三代汽车用高强钢——Q&P钢的研究现状[J]. 金属热处理, 2019, 44(2): 1-7. An Keyu, Liang Jiamin, Xin Feifan, et al. Research status of the 3rd generation advanced high strength steels for automobiles—Q&P steels[J]. Heat Treatment of Metals, 2019, 44(2): 1-7. [5]Luo L B, Li W, Gong Y, et al. Tensile behavior and deformation mechanism of quenching and partitioning treated steels at different deforming temperatures[J]. Journal of Iron and Steel Research, International, 2017, 24(11): 1104-1108. [6]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [7]Speer John G, Edmonds David V, Rizzo Fernando C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(4): 219-237. [8]Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment[J]. Acta Materialia, 2008, 56(1): 16-22. [9]Irene de Diego-Calderón, Sabirov I, Jon Molina-Aldareguia, et al. Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture properties[J]. Materials Science and Engineering A, 2016, 657: 136-146. [10]Huang Q L, Christina Schröder, Horst Biermann, et al. Influence of martensite fraction on tensile properties of quenched and partitioned (Q&P) martensitic stainless steels[J]. Steel Research International, 2016, 87(8): 1082-1094. [11]Eun Jung Seo, Lawrence Cho, Yuri Estrin, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel[J]. Acta Materialia, 2016, 113: 124-139. [12]HajyAkbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel[J]. Acta Materialia, 2016, 104: 72-83. [13]Toji Y, Matsuda H, Herbig M, et al. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy[J]. Acta Materialia, 2014, 65: 215-228. [14]Takahama Y, Santofimia M J, Mecozzi M G, et al. Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel[J]. Acta Materialia, 2012, 60(6/7): 2916-2926. [15]Sugimoto K I, Usui N, Kobayashi M, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ International, 1992, 32(12): 1311-1318. [16]Su Y Y, Chiu L H, Chuang T L, et al. Retained austenite amount determination comparison in JIS SKD11 steel using quantitative metallography and X-ray diffraction methods[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 482: 1165-1168. [17]Gerdemann F L H, Speer J G, Matlock D K. Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process[J]. Materials Science and Technology, 2004(1): 439-449. |