[1]Das A A, Yacoub M M, Zantout B, et al. Cast metal-matrix composites[J]. Cast Metals, 1988, 1(2): 69-78. [2]Uyyuru R K, Surappa M K, Brusethaug S. Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple[J]. Wear, 2006, 260(11): 1248-1255. [3]Allison J E, Cole G S. Metal-matrix composites in the automotive industry: Opportunities and challenges[J]. JOM, 1993, 45(1): 19-24. [4]Das D K, Mishra P C, Singh S, et al. Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites-a review[J]. International Journal of Mechanical and Materials Engineering, 2014, 9(1): 1-16. [5]Deuis R L, Subramanian C, Yellup J M. Abrasive wear of aluminum composites-a review[J]. Wear, 1996, 201(1/2): 132-144. [6]Deuis R L, Subramanian C, Yellup J M. Dry sliding wear of aluminum composites-a review[J]. Composites Science and Technology, 1997, 57(4): 415-435. [7]周海滨, 姚萍屏, 肖叶龙, 等. SiC颗粒强化铜基粉末冶金摩擦材料的表面形貌特征及磨损机理[J]. 中国有色金属学报, 2014, 24(9): 2272-2279. Zhou Haibin, Yao Pingping, Xiao Yelong, et al. Topographical characteristics and wear mechanism of copper-based powder metallurgy friction materials reinforced by SiC particle[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(9): 2272-2279. [8]杨佼源, 韦习成, 洪晓露, 等. 高含量SiC颗粒增强铝基复合材料的增摩特性研究[J]. 摩擦学学报, 2014, 34(4): 446-451. Yang Jiaoyuan, Wei Xicheng, Hong Xiaolu, et al. Dry friction coefficient of high content sic particle reinforced aluminum matrix composite against commercial friction material[J]. Tribology, 2014, 34(4): 446-451. [9]Karthikeyan A, Nallusamy S. Experimental analysis on sliding wear behaviour of aluminium-6063 with SiC particulate composites[C]//International Journal of Engineering Research in Africa, 2017, 31: 36-43. [10]戈晓岚, 许晓静, 姜 左, 等. 微米SiCp增强铝基复合材料摩擦磨损性能研究[J]. 中国机械工程, 2004, 15(20): 1871-1875. Ge Xiaolan, Xu Xiaojing, Jiang Zuo, et al. Investigation on wear behaviour of micrometer SiCp reinforced Al matrix composite[J]. China Mechanical Engineering, 2004, 15(20): 1871-1875. [11]张蜀红, 刘 炳. 铝基复合材料热处理的研究及发展应用[J]. 热加工工艺, 2009, 38(22): 79-82. Zhang Shuhong, Liu Bing. Research and development of heat treatment process of aluminum matrix composites[J]. Hot Working Technology, 2009, 38(22): 79-82. [12]Ram Prabhu T, Varma V K, Vedantam S. Effect of reinforcement type, size, and volume fraction on the tribological behavior of Fe matrix composites at high sliding speed conditions[J]. Wear, 2014, 309(1/2): 247-255. [13]郝世明, 谢敬佩, 刘洧宁, 等. 30%SiCp/2024复合材料的组织和热处理特性[J]. 材料热处理学报, 2017, 38(4): 38-43. Hao Shiming, Xie Jingpei, Liu Youning, et al. Microstructure and heat treating behaviors of 30%SiCp/2024 aluminum matrix composites[J]. Transactions of Materials and Heat Treatment, 2017, 38(4): 38-43. [14]岑晓倩. 热处理对SiC颗粒增强铝基复合材料组织及力学性能的影响[J]. 铸造技术, 2017, 38(5): 1051-1053. Cen Xiaoqian. Influence of heat treatment on mechanical behavior and microstructure of SiCp/6061Al composites[J]. Foundry Technology, 2017, 38(5): 1051-1053. [15]徐迎华, 齐育红, 张世锋, 等. 热处理对Al65Cu20Cr15准晶颗粒增强铝基复合材料磨损性能的影响[J]. 大连海事大学学报, 2003, 29(4): 73-75. Xu Yinghua, Qi Yuhong, Zhang Shifeng, et al. Effect of heat treatment on wear property of Al-Al65Cu20Cr15 quasicrystalline composite[J]. Journal of Dalian Maritime University, 2003, 29(4): 73-75. [16]刘 娟, 兰 箭. 2A14铝合金的固溶-冷变形-时效工艺[J]. 金属热处理, 2018, 43(7): 163-167. Liu Juan, Lan Jian. Solid solution-cold deformation-aging process of 2A14 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(7): 163-167. [17]陈聪聪. 颗粒增强铝基梯度复合材料摩擦磨损性能的研究[D]. 长沙: 湖南大学, 2011. |