[1]尹志民, 姜 锋, 潘清林. 钪和含钪合金[M]. 长沙: 中南大学出版社, 2007. [2]Kulitskiy V, Malopheyev S, Mironov S, et al. Grain refinement in an Al-Mg-Sc alloy: Equal channel angular pressing versus friction-stir processing[J]. Materials Science and Engineering A, 2016, 674(1): 480-490. [3]颜 丝, 尹志民, 路丽英, 等. 稳定化退火对大生产条件下制备的5B70铝合金板材组织和性能的影响[J]. 轻合金加工技术, 2009, 37(12): 19-22. Yan Si, Ying Zhimin, Lu Liying, et al. Effect of stabilized annealing on microstructure and properties of manufacture Al-Mg-Sc alloy sheet under conditions of large-scale production[J]. Light Alloy Fabrication Technology, 2009, 37(12): 19-22. [4]Malopheyev S, Kulitskiy V, Mironov S, et al. Friction-stir welding of an Al-Mg-Sc-Zr alloy in as-fabricated and work-hardened conditions[J]. Materials Science and Engineering A, 2014, 600(5): 159-170. [5]聂 波, 尹志民, 姜 锋, 等. 稳定化退火工艺对铝镁钪合金力学和腐蚀性能的影响[J]. 材料热处理学报, 2008, 29(3): 58-61. Nie Bo, Ying Zhimin, Jiang Feng, et al. Influence of stabilizing annealing on tensile property and exfoliation corrosion resistance of Al-Mg-Sc alloy[J]. Transactions of Materials and Heat Treatment, 2008, 29(3): 58-61. [6]Kumar N, Mishra R S. Additivity of strengthening mechanisms in ultrafine grained Al-Mg-Sc alloy[J]. Materials Science and Engineering A, 2013, 580(37): 175-183. [7]Smolej A, Klob Ar D, Skaza B, et al. Superplasticity of the rolled and friction stir processed Al-4.5Mg-0.35Sc-0.15Zr alloy[J]. Materials Science and Engineering A, 2014, 590(1): 239-245. [8]孙 雪, 潘清林, 李梦佳, 等. Al-Mg-Sc-Zr合金冷轧板材的超塑性变形行为[J]. 中国有色金属学报, 2016, 26(2): 280-287. Sun Xue, Pan Qinglin, Li Mengjia, et al. Superplastic deformation behavior of cold-rolled Al-Mg-Sc-Zr alloy sheet[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 280-287. [9]刘 辉, 姜 锋, 刘乐乐, 等. 5B70铝合金板材腐蚀性能的研究[J]. 轻合金加工技术, 2014, 42(10): 30-35. Liu Hui, Jiang Feng, Liu Lele, et al. Research on the corrosion performance of 5B70 aluminum alloy sheets[J]. Light Alloy Fabrication Technology, 2014, 42(10): 30-35. [10]方 杰, 徐 翩, 刘 刚, 等. 5B70铝合金板材疲劳裂纹萌生与扩展机制[J]. 材料热处理学报, 2017, 38(10): 51-56. Fang Jie, Xue Pian, Liu Gang, et al. Fatigue crack initiation and propagation mechanism of 5B70 aluminum alloy plate[J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 51-56. [11]孙瑞雪, 徐 磊. 不同应变速率下 5083 铝合金的拉伸性能及断口形貌观察[J]. 轻金属, 2012, 12(8): 59-61. Sun Ruixue, Xu Lei. The tensile properties and fracture morphologies of 5083 aluminum alloy under different strain rates[J]. Light Metals, 2012, 12(8): 59-61. [12]高倩倩, 胡本润, 杨 伟. 应变速率对2024铝合金拉伸性能的影响研究[J]. 热加工工艺, 2014, 43(12): 113-116. Gao Qianqian, Hu Benrun, Yang Wei. Effect of strain rate on mechanical properties of 2024 alloy[J]. Hot Working Technology, 2014, 43(12): 113-116. [13]刘 军, 杨黎明, 谢书港, 等. 6061 铝合金的动态拉伸性能及其本构模型[J]. 机械工程材料, 2017, 41(3): 49-52. Liu Jun, Yang Liming, Xie Shugang, et al. Dynamic tensile properties and constitutive model of 6061 aluminum alloy[J]. Materials for Mechanical Engineering, 2017, 41(3): 49-52. [14]张 臻, 邓运来, 郭 辉, 等. 应变速率对Al-Zn-Mg合金室温拉伸性能的影响[J]. 功能材料, 2017, 16(7): 215-220. Zhang Zhen, Deng Yunlai, Guo Hui, et al. Effect of strain rate on tensile properties of Al-Zn-Mg alloy[J]. Journal of Functional Materials, 2017, 16(7): 215-220. [15]王淑花, 安秀娟. 拉伸速率对2A40合金拉伸性能的影响[J]. 热加工工艺, 2012, 41(14): 72-73. Wang Shuhua, An Xiujuan. Effect of tensile rate on tensile properties of 2A40 alloy[J]. Hot Working Technology, 2012, 41(14): 72-73. [16]姜美琴. 金属材料室温拉伸试验影响因素浅析[J]. 江苏冶金, 2007, 35(2): 27-31. [17]张 志, 郎利辉, 李 涛, 等. 高强度铝合金7B04-T6板材温拉伸本构方程[J]. 北京航空航天大学学报, 2009, 35(3): 600-603. Zhang Zhi, Lang Lihui, Li Tao, et al. Constitutive equations of high strength aluminum alloy sheet 7B04-T6 under warm tension[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 600-603. [18]Fields D S, Bachofen W A. Determination of strain hardening characteristics bt torsion testing[J]. Proc ASTM, 1957, 57(2): 1259-1272. |