[1]曹连民, 孙云鲁, 庞 斌, 等. 液压支架制造工艺技术研究[J]. 煤炭科学技术, 2016, 44(4): 83-88. Cao Lianmin, Sun Yunlu, Pang Bin, et al. Research on manufacturing technology of hydraulic support[J]. Coal Science and Technology, 2016, 44(4): 83-88. [2]韩文静, 张培训, 汤其建, 等. 单体液压支柱缸体激光熔覆Ni60A+20%WC性能[J]. 煤炭学报, 2012, 37(2): 340-343. Han Wenjing, Zhang Peixun, Tang Qijian, et al. Laser cladding Ni60A+20%WC performance of single hydraulic prop cylinder[J]. Journal of China Coal Society, 2012, 37(2): 340-343. [3]刘鸣放. 激光熔覆和内壁熔铜技术在液压支架上的应用[J]. 能源与环保, 2018, 40(11): 163-166. Liu Mingfang. Application of laser cladding and inner wall copper melting technology in hydraulic support[J]. Energy and Environmental Protection, 2008, 40(11): 163-166. [4]王斌修, 李成彪. 激光熔覆技术研究现状及展望[J]. 机床与液压, 2013, 41(7): 192-194. Wang Binxiu, Li Chengbiao. Research status and prospect of laser cladding technology[J]. Machine Tool and Hydraulics, 2013, 41(7): 192-194. [5]Zhang L, Zhang Y K, Lu, J Z, et al. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion[J]. Corrosion Science, 2011, 66: 5-13. [6]付祖冈, 张自强, 孟贺超, 等. 激光熔覆技术在高腐蚀环境下液压支架的试验研究[J]. 煤炭科学技术, 2018, 46(5): 155-159. Fu Zugang, Zhang Ziqiang, Meng Hechao, et al. Experimental study on laser cladding technology for hydraulic support in highly corrosive environment[J]. Coal Science and Technology, 2008, 46(5): 155-159. [7]杨庆东, 苏伦昌, 董春春, 等. 液压支架立柱27SiMn激光熔覆铁基合金涂层的性能[J]. 中国表面工程, 2013, 26(6): 42-47. Yang Qingdong, Su Lunchang, Dong Chunchun, et al. Performance of 27SiMn laser cladding iron-based alloy coating on hydraulic support column[J]. China Surface Engineering, 2013, 26(6): 42-47. [8]郭 卫, 李凯凯, 柴蓉霞, 等. 27SiMn钢表面激光熔覆铁基合金组织和耐磨性分析[J]. 应用激光, 2018, 38(3): 351-357. Guo Wei, Li Kaikai, Chai Rongxia, et al. Microstructure and wear resistance analysis of 27SiMn steel surface laser cladding iron-based alloy[J]. Applied Laser, 2008, 38(3): 351-357. [9]柴蓉霞, 李凯凯, 郭 卫, 等. 热处理工艺对304不锈钢熔覆层组织和性能的影响[J]. 激光与光电子学进展, 2018, 55(5): 279-285. Chai Rongxia, Li Kaikai, Guo Wei, et al. Effect of heat treatment process on microstructure and properties of 304 stainless steel cladding layer[J]. Laser and Optoelectronics Progress, 2008, 55(5): 279-285. [10]戴晓琴, 陈瀚宁, 雷剑波, 等. 激光增材制造304不锈钢显微结构特征与性能研究[J]. 热加工工艺, 2017(16): 91-94. Dai Xiaoqin, Chen Hanning, Lei Jianbo, et al. Study on the microstructure and properties of 304 stainless steel manufactured by laser additive[J]. Hot Working Technology, 2017(16): 91-94. [11]Zhu Y Z, Wang S Z, Li B L, et al. Grain growth and microstructure evolution based mechanical property predicted by a modified Hall-Petch equation in hot worked Ni76Cr19AlTiCo alloy[J]. Materials and Design, 2014, 55(6): 456-462. [12]Jia W, Ma L, Tang Y, et al. Relationship between microstructure and properties during multi-pass, variable routes and different initial temperatures hot flat rolling of AZ31B magnesium alloy[J]. Materials and Design, 2016, 103: 171-182. |