[1]Rima Dey, Soumitro Tarafder, Sivaprasad S. Influence of phase transformation due to temperature on cyclic plastic deformation in 304LN stainless steel[J]. International Journal of Fatigue, 2016, 90: 148-157. [2]Yin F, Yang L, Wang M, et al. Study on ultra-low cycle fatigue behavior of austenitic stainless steel[J]. Thin-Walled Structures, 2019, 143: 106-205. [3]柴万里, 贺庆强, 王凤序, 等. 沿海大气环境304不锈钢法兰连接双头螺柱腐蚀开裂失效分析[J]. 金属热处理, 2019, 44(11): 223-226. Chai Wanli, He Qingqiang, Wang Fengxu, et al. Failure analysis of corrosion and cracking of 304 stainless steel flange connection double- headed stud in coastal atmosphere[J]. Heat Treatment of Metals, 2019, 44(11): 223-226. [4]Sivaprasad S, Surajit Kumar Paul, Arpan Das, et al. Cyclic plastic behaviour of primary heat transport piping materials: Influence of loading schemes on hysteresis loop[J]. Materials Science and Engineering: A, 2010, 527(26): 6858-6869. [5]Juho Talonen, Hannu Hänninen, Pertti Nenonen, et al. Effect of strain rate on the strain-induced γ→α′-martensite transformation and mechanical properties of austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2005, 36(2): 421-432. [6]Ashok Kumar, Singhal Lokesh. Effect of strain rate on martensitic transformation during uniaxial testing of AISI-304 stainless steel[J]. Metallurgical Transactions A, 1989, 20(12): 2857-2859. [7]Dilip Maruthi G, Purushotham N, Rashmi R. Low temperature embrittlement studies on stainless steel 304 LN TIG welds[J]. Materials Today: Proceedings, 2018, 5(1): 2891-2900. [8]高 伟. 304LN不锈钢管材热挤压工艺参数研究[D]. 秦皇岛: 燕山大学, 2011. Gao Wei. Research on hot extrusion processing properties for 304LN stainless steel pipe[D]. Qinhuangdao: Yanshan University, 2011. [9]Swati Ghosh, Kain Vivekanand, Ray Ayan, et al. Deterioration in fracture toughness of 304LN austenitic stainless steel due to sensitization[J]. Metallurgical and Materials Transactions A, 2009, 40(12): 2938. [10]Xin Jijun, Fang Chao, Huang Chuanjun, et al. Correlation between microstructure evolution and cryogenic fracture toughness in aging ITER-grade 316LN weldments[J]. Cryogenics, 2018, 96: 144-150. [11]何德孚, 曹志樑, 蔡新强, 等. 含氮奥氏体不锈钢在焊管领域中的应用前景[J]. 钢管, 2006(5): 1-8. He Defu, Cao Zhiliang, Cai Xinqiang, et al. Application prospect of nitrogen-containing austenitic stainless steel in welded pipe manufacturing industry[J]. Steel Pipe, 2006(5): 1-8. [12]沈子豪, 李 扬, 刘奎周. 深冷处理对304LN不锈钢板焊接接头组织和力学性能的影响[J]. 金属热处理, 2019, 44(8): 181-184. Shen Zihao, Li Yang, Liu Kuizhou. Effect of deep cryogenic treatment on microstructure and mechanical properties of 304LN stainless steel plate welded joints[J]. Heat Treatment of Metals, 2019, 44(8): 181-184. [13]Vishnuvardhan S, Gandhi P, Saravanan M, et al. Fracture studies on narrow gap welded SA 312 type 304LN stainless steel straight pipes under quasi-cyclic loading[J]. International Journal of Pressure Vessels and Piping, 2019, 174: 32-41. [14]Li Yajing, Yu Dunji, Li Bingbing, et al. Martensitic transformation of an austenitic stainless steel under non-proportional cyclic loading[J]. International Journal of Fatigue, 2019, 124: 338-347. [15]刘天佐, 魏玉忠, 马芹征, 等. Super304H钢650 ℃时效过程中析出相演化的定量分析[J]. 金属热处理, 2019, 44(12): 232-237. Liu Tianzuo, Wei Yuzhong, Ma Qinzheng, et al. Quantitative analysis of evolution of precipitated phase in super 304H steel at 650 ℃[J]. Heat Treatment of Metals, 2019, 44(12): 232-237. [16]Fan Shenggang, Jia Lianlian, Lyu Xiao, et al. Experimental investigation of austenitic stainless steel material at elevated temperatures[J]. Construction and Building Materials, 2017, 155: 267-285. [17]Liu X, Zhao C, Zhao K. Microstructure evolution and mechanical/physical properties of 25# valve alloys steel subjected to deep cryogenic treatment[J]. Vacuum, 2019, 160: 394-401. [18]Korade D N, Ramana K V, Jagtap K R, et al. Effect of deep cryogenic treatment on tribological behaviour of D2 tool steel-An experimental investigation[J]. Materials Today: Proceedings, 2017, 4(8): 7665-7673. [19]Sun G F, Wang Z D, Lu Y, et al. Numerical and experimental investigation of thermal field and residual stress in laser-MIG hybrid welded NV E690 steel plates[J]. Journal of Manufacturing Processes, 2018, 34: 106-120. [20]Hee Seon Bang, Han Sur Bang, You Chul Kim, et al. Analysis of residual stress on AH32 butt joint by hybrid CO2 laser-GMA welding[J]. Computational Materials Science, 2010, 49(2): 217-221. [21]Flores Johnson E A, Muránsky O, Hamelin C J, et al. Numerical analysis of the effect of weld-induced residual stress and plastic damage on the ballistic performance of welded steel plate[J]. Computational Materials Science, 2012, 58: 131-139. |