[1]李国强, 黄 雷, 张 超. 国产超高强钢Q890高温力学性能试验[J]. 建筑科学与工程学报, 2018, 35(3): 1-6. Li Guoqiang, Huang Lei, Zhang Chao. Experiment on mechanical properties of domestic ultra-high strength steel Q890 at elvated temperature[J]. Journal of Architecture and Civil Engineering, 2018, 35(3): 1-6. [2]刘程鹏, 牟洪仲. 高层建筑用耐火钢的组织与性能[J]. 金属热处理, 2014, 39(5): 94-97. Liu Chengpeng, Mou Hongzhong. Microstructure and properties of fire-resistant steel for high rise building[J]. Heat Treatment of Metals, 2014, 39(5): 94-97. [3]强旭红, 毋凯冬, 姜 旭, 等. 高强钢S460 高温力学性能研究与抗火设计建议[J]. 湖南大学学报(自然科学版), 2018, 45(11): 37-45. Qiang Xuhong, Wu Kaidong, Jiang Xu, et al. Study on mechanical properties of high strength steel S460 at elevated temperatures and fire-resistance design recommendations[J]. Journal of Hunan University (Natural Sciences), 2018, 45(11): 37-45. [4]王卫永, 刘 兵, 李国强. 高强度Q460钢材高温力学性能试验研究[J]. 防灾减灾工程学报, 2012, 32: 30-35. Wang Weiyong, Liu Bing, Li Guoqiang. Experimental study on mechanical properties of Q460 high strength steel at elevated temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32: 30-35. [5]高福彬, 杨吉春. 新型310S耐热钢组织和高温力学性能[J]. 金属热处理, 2014, 39(11): 30-33. Gao Fubin, Yang Jichun. Microstructure and elevated temperature mechanical properties of a novel 310S steel[J]. Heat Treatment of Metals, 2014, 39(11): 30-33. [6]支金花, 王 裕, 李继红, 等. 1Cr12Ni2W1MolV马氏体不锈钢的组织和高温力学性能[J]. 金属热处理, 2018, 43(3): 68-71. Zhi Jinhua, Wang Yu, Li Jihong, et al. Microsturcture and high temperature mechanical properties of martensitic stainless steel[J]. Heat Treatment of Metals, 2018, 43(3): 68-71. [7]胡 敏, 郑 华, 王玉涛. 钼对低碳钢高温力学性能的影响[J]. 金属热处理, 2009, 34(6): 24-28. Hu Min, Zheng Hua, Wang Yutao. Influence of molybdenum on high temperature mechanical properties of low carbon steel[J]. Heat Treatment of Metals, 2009, 34(6): 24-28. [8]魏文澜, 韩礼红, 王建国, 等. 10Cr3Mo 钢与N80 钢的高温力学性能[J]. 金属热处理, 2016, 41(2): 23-27. Wei Wenlan, Han Lihong, Wang Jianguo, et al. High temperature mechanical properties of 10Cr3Mo and N80 steels[J]. Heat Treatment of Metals, 2016, 41(2): 23-27. [9]Chiew S P, Zhao M S, Lee C K. Mechanical properties of heat treated high strength steel under fire/post-fire conditions[J]. Journal of Constructional Steel Research, 2014, 98: 12-19. [10]丁大伟, 徐学东. Q235碳素钢拉伸塑性变形过程中组织转变的EBSD “原位”分析研究[J]. 钢铁, 2009, 44(2): 56-59. Ding Dawei, Xu Xuedong. EBSD “in-situ” study of microstructural transformation of plain carbon steel Q235 during tension deformation[J]. Iron and Steel, 2009, 44(2): 56-59. [11]陈重毅, 麻永林, 邢淑清, 等. 核用SA508-4N钢高温力学性能及断裂行为[J]. 内蒙古科技大学学报, 2018, 37(2): 129-135. Chen Zhongyi, Ma Yonglin, Xing Shuqing, et al. High temperature mechanical properties and fracture behaviors on SA508-4N steel for nuclear pressure vessel[J]. Journal of Inner Mongolia University of Science and Technology, 2018, 37(2): 129-135. [12]骆靓鉴, 胡汪洋, 陈纪昌, 等. 铁素体不锈钢拉伸变形过程中的原位EBSD 研究[J]. 电子显微学报, 2012, 31(1): 1-6. Luo Liangjian, Hu Wangyang, Chen Jichang, et al. In-situ EBSD analysis on ferritic stainless steel during tensile deformation[J]. Journal of Chinese Electron Microscopy Society, 2012, 31(1): 1-6. [13]Nohava J, Haušild P, Karlík M, et al. Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel[J]. Materials Characterization, 2003, 49(3): 211-217. |