[1]Karbasian H, Tekkaya A E. A review on hot stamping [J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118. [2]杨洪林, 张深根, 洪继要, 等. 22MnB5热冲压钢的研究进展[J]. 锻压技术, 2014, 39(1): 1-5. Yang Honglin, Zhang Shengen, Hong Jiyao, et al. Development research on 22MnB5 hot stamping steel [J]. Forging and Stamping Technology, 2014, 39(1): 1-5. [3]Lei Chengxi, Cui Junjia, Xing Zhongwen, et al. Investigation of cooling effect of hot-stamping dies by numerical simulation [J]. Physics Procedia, 2012, 25: 118-124. [4]He L F, Zhao G Q, Li Y P, et al. Research on mechanical properties of 22MnB5 steel quenched in a steel die [J]. Journal of Shanghai Jiaotong University (Science), 2011, 16(2): 129-132. [5]Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultra-high strength steel parts [J]. CIRP Annals, 2017, 66(2): 755-777. [6]Venema J, Matthews D T A, Hazrati J, et al. Friction and wear mechanisms during hot stamping of AlSi coated press hardening steel [J]. Wear, 2017, 380-381: 137-145. [7]杨 柳, 费炜杰, 吴健敏, 等. 热处理工艺对22MnB5车用超高强度马氏体钢的组织性能影响[J]. 现代冶金, 2017, 45(6): 8-10. Yang Liu, Fei Weijie, Wu Jianmin, et al. Effect of heat treatment process on microstructure and properties of 22MnB5 ultra high strength martensitic steel [J]. Modern Metallurgy, 2017, 45(6): 8-10. [8]张 浩, 许正华, 费炜杰, 等. 22MnB5超高强度钢-纤维复合材料的制备及力学性能研究[J]. 玻璃纤维, 2018(5): 1-7. Zhang Hao, Xu Zhenghua, Fei Weijie, et al. Preparation and mechanical properties of 22MnB5 ultra high strength steel-fiber composites [J]. Fiber Glass, 2018(5): 1-7. [9]费炜杰, 许正华, 李华冠, 等. 淬火加热温度对22MnB5超高强度钢组织及性能的影响[J]. 热加工工艺, 2019, 48(4): 210-214, 217. Fei Weijie, Xu Zhenghua, Li Huaguan, et al. Effect of quenching temperature on microstructure and properties of 22MnB5 ultra high strength steel [J]. Hot Working Technology, 2019, 48(4): 210-214, 217. [10]Johson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Proceedings of the Seventh International Symposium on Ballistics, 1983, 21: 541-547. [11]Hokka M, Leemet T, Shrot A, et al. Characterization and numerical modeling of high strain rate mechanical behavior of Ti-15-3 alloy for machining simulations [J]. Materials Science and Engineering, 2012, 550: 350-357. [12]Zerilli F J, Armstrong R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J]. Journal of Applied Physics, 1990, 68(4): 1580-1591. [13]Armstrong R W, Walley S M. High strain rate properties of metals and alloys [J]. International Materials Reviews, 2008, 53(3): 105-128. [14]Peng W W, Zeng W D, Wang Q J, et al.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models [J]. Materials and Design, 2013, 51: 95-104. [15]Salari S, Naderi M, Bleck W. Constitutive modeling during simultaneous forming and quenching of a boron bearing steel at high temperatures [J]. Journal of Materials Engineering & Performance, 2015, 24(2): 808-815. [16]Li H, He L, Zhao G, et al. Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson-Cook model[J]. Materials Science and Engineering: A, 2013, 580: 330-348. [17]马 宁, 胡 平, 武文华, 等. 高强度钢板热成形本构理论与试验分析[J]. 力学学报, 2011, 43(2): 346-354. Ma Ning, Hu Ping, Wu Wenhua, et al. Constitutive theory and experiment analysis of hot forming for high strength steel plate [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 346-354. [18]Zhu Bin, Zhu Jia, Wang Yanan, et al. Combined hot stamping and Q&P processing with a hot air partitioning device [J]. Journal of Materials Processing Technology, 2018, 262: 392-402. [19]Neumann R, Schuster S, Gibmeier J, et al. Two-scale simulation of the hot stamping process based on a Hashin-Shtrikman type mean field model [J]. Journal of Materials Processing Technology, 2019, 267: 124-140. [20]Merklein M, Wieland M, Lechner M, et al. Hot stamping of boron steel sheets with tailored properties: A review [J]. Journal of Materials Processing Technology, 2016, 228: 11-24. [21]胡 军, 胡春艳, 张 伟, 等. 基于DYNAFORM的22MnB5钢热成形工艺数值模拟研究[J]. 制造业自动化, 2016, 38(10): 108-109. Hu Jun, Hu Chunyan, Zhang Wei, et al. Numerical simulation research on hot forming technology of 22MnB5 on DYNAFORM[J]. Manufacturing Automation, 2016, 38(10): 108-109. [22]Fei Weijie, Li Huaguan, Li Xuan, et al. Flow behaviors of 22MnB5 steel at a high temperature [J]. Materials Research Express, 2019, 6(7): DOI: 10.1088/2053-1591/ab131d. [23]韦凤慈, 罗 攀, 张 涛, 等. 热变形对高碳钢连续冷却转变的影响[J]. 金属热处理, 2018,43(5): 139-143. Wei Fengci, Luo Pan, Zhang Tao, et al. Effect of thermal deformation on continuous cooling transformation of high carbon steel [J]. Heat Treatment of Metals, 2018, 43(5): 139-143. [24]Liu Yong, Zhu Zhoujie, Wang Zijian, et al. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets [J]. Procedia Engineering, 2017, 207: 723-728. [25]李 欣, 王 丹, 陈军绪, 等. 手刹固定板冲压成形数值模拟[J]. 吉林大学学报: 工学版, 2019, 49(4): 1258-1265. Li Xin, Wang Dan, Chen Junxu, et al. Numerical simulation of hand brake fixed plate stamping [J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1258-1265. [26]沈 智. 6014铝合金温热冲压成形性能与工艺研究[D]. 北京: 机械科学研究总院, 2017. |