金属热处理 ›› 2020, Vol. 45 ›› Issue (6): 28-33.DOI: 10.13251/j.issn.0254-6051.2020.06.006

• 工艺研究 • 上一篇    下一篇

金属材料喷雾淬火过程的界面热交换分析

徐戎1, 李落星2,3   

  1. 1. 湖南文理学院 机械工程学院, 湖南 常德 415000;
    2. 湖南大学 汽车车身先进设计制造国家重点实验室, 湖南 长沙 410082;
    3. 湖南大学 机械与运载工程学院, 湖南 长沙 410082
  • 收稿日期:2019-12-12 出版日期:2020-06-25 发布日期:2020-09-02
  • 通讯作者: 李落星,教授,博士,E-mail: llxly2000@163.com
  • 作者简介:徐 戎(1980—),男,讲师,博士,主要研究方向为材料压力加工先进制造技术,E-mail: samxurong@163.com。
  • 基金资助:
    湖南省教育厅科研项目(17C1085);湖南省自然科学基金(2018JJ2274);湖南省高等学校省特色学科(湘教通〔2018〕469)

Interfacial heat exchange analysis of metal materials during spray quenching process

Xu Rong1, Li Luoxing2,3   

  1. 1. College of Mechanical Engineering, Hunan University of Arts and Science, Changde Hunan 415000, China;
    2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha Hunan 410082, China;
    3. College of Mechanical and Vehicle Engineering, Hunan University, Changsha Hunan 410082, China
  • Received:2019-12-12 Online:2020-06-25 Published:2020-09-02

摘要: 通过末端淬火试验,对铝合金试样喷雾淬火过程的界面热交换进行了研究。采用反热传导法求解了所有试验的界面热流密度(q)和界面传热系数(h),重点分析了喷雾压力、喷嘴直径和试样表面粗糙度对界面热交换的影响。结果表明:喷射压力对整个淬火界面换热过程均有影响,但对过渡沸腾阶段影响更大,且喷射压力越大,q及其峰值qmax越大,进入核沸腾阶段的时间越短;喷嘴直径越大,qqmax越大,越早进入核沸腾阶段,但增大喷嘴直径对界面换热的影响存在上限;随表面粗糙度增大,qqmax先减小后增大;在本试验条件下,上述喷射压力、喷嘴直径和表面粗糙度对界面热交换的影响规律均不受另外两个参数取值的影响。此外,由于喷射的微小液滴均匀覆盖了整个热表面,产生了剧烈的核沸腾,导致在部分试验中,q曲线在核沸腾阶段出现了二次升高现象。

关键词: 喷雾淬火, 界面热交换, 喷射压力, 喷嘴直径, 表面粗糙度

Abstract: The interfacial heat exchange of aluminum alloy during spray quenching process was studied by end quenching test. The interfacial heat flux (q) and interfacial heat transfer coefficient (h) of all the tests were solved by inverse heat conduction method. The influence of spray pressure, nozzle diameter and surface roughness on the interfacial heat exchange was analyzed. The results show that the spray pressure has an effect on the whole quenching interface heat transfer process, but it has a greater effect on the transition boiling stage. The larger the spray pressure, the larger the q and its peak qmax, and the shorter the time to enter the nucleation boiling stage. The larger the nozzle diameter is, the larger q and qmax are, and the earlier the nozzle enters the nucleation boiling stage. However, there is an upper limit on the effect of increasing the nozzle diameter on the interfacial heat transfer. With the increase of surface roughness, q and qmax decrease first and then increase. Under the experimental conditions, the effects of spray pressure, nozzle diameter and surface roughness on the interfacial heat exchange are not affected by the other two parameters. Under the experimental conditions, the influence of any of the above three parameters, i.e. spray pressure, nozzle diameter and surface roughness, on the interfacial heat exchange is not affected by the other two parameters. In addition, the second increase of q curve during the nucleation boiling stage is resulted in some experiments due to intense nucleation boiling caused by the sprayed droplets with very small diameter uniformly covering the whole thermal surface.

Key words: spray quenching, interface heat exchange, spray pressure, nozzle diameter, surface roughness

中图分类号: