[1]傅宏镇, 陈玉平, 魏育环, 等. 碳、钨、钼和铁对GH128合金显微组织和性能的影响[J]. 钢铁研究总院学报, 1985, 5(1): 75-82. Fu Hongzheng, Chen Yuping, Wei Yuhuan, et al. Influence of C, W, Mo and Fe on the microstructure and properties of alloy GH318[J]. Central Iron and Streel Research Institute Technical Bulletin, 1985, 5(1): 75-82. [2]赵 熹, 原 鲲, 周 羽. GH3128高温拉伸强度设计方法的优化[J]. 清华大学学报(自然科学版), 2015, 55(9): 998-1002. Zhao Xi, Yuan Kun, Zhou Yu. Optimization of the high temperature tensile strength design method for the GH3128 alloy[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(9): 998-1002. [3]傅宏镇, 张旭瑶, 吴长钧, 等. GH128合金的析出相及其对力学性能的影响[J]. 钢铁研究总院学报, 1985, 5(4): 307-404. Fu Hongzhen, Zhang Xuyao, Wu Changjun, et al. Precipitated phases and their influence on the mechanical properties of superalloy GH128[J]. Central Iron and Streel Research Institute Technical Bulletin, 1985, 5(4): 307-404. [4]吴常钧, 金哲学. 长期时效和晶粒度对GH333和GH128合金热疲劳的影响[J]. 钢铁研究总院学报, 1986, 6(2): 38-46. Wu Changjun, Jin Zhexue. Influence of long-term aging and grain size on thermal fatigue property of GH333 and GH128 alloys[J]. Central Iron and Streel Research Institute Technical Bulletin, 1986, 6(2): 38-46. [5]原 鲲, 赵 熹, 叶 萍, 等. 确定GH3128高温拉伸性能设计许用值的方法[J]. 清华大学学报(自然科学版), 2014, 54(9): 1236-1239. Yuan Kun, Zhao Xi, Ye Ping, et al. Methodology for determining high temperature tensile design allowable strengths of alloy GH3128[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(9): 1236-1239. [6]王哲仁, 邵焕平, 张红英. 不同固溶处理对GH128晶粒度和显微组织的影响[J]. 机械工程材料, 1994, 18(4): 26-28. Wang Zheren, Shao Huanping, Zhang Hongying. Effects of different solution treatments on microstructure and grain size of GH138 surperalloy[J]. Materials for Mechanical Engineering, 1994, 18(4): 26-28. [7]冯贞伟, 高腾飞, 邵天威, 等. C/C复合材料与镍基高温合金GH3128钎焊[J]. 焊接学报, 2015, 36(12): 105-108. Feng Zhenwei, Gao Tengfei, Shao Tianwei, et al. Brazing of C/C composite and Ni-based high temperature alloy GH3128[J]. Transactions of the China Welding Institution, 2015, 36(12): 105-108. [8]董建新. 镍基合金管材挤压及组织控制[M]. 北京: 冶金工业出版社, 2014. [9]Shi C, Mao W, Chen X G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy[J]. Materials Science and Engineering A, 2013, 571(9): 83-91. [10]Sakthivel T, Laha K, Nandagopal M, et al. Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X[J]. Materials Science and Engineering A, 2012, 534(3): 580-587. [11]Mcqueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995, 53(1/2): 293-310. [12]Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24. [13]Oh S I. Finite element analysis of metal forming processes with arbitrarily shaped dies[J]. International Journal of Mechanical Sciences, 1982, 24(8): 479-493. [14]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [15]Murty S V S N, Rao B N, Kashyap B P. Development and validation of a processing map for zirconium alloys[J]. Modelling and Simulation in Materials Science and Engineering, 2002, 10(5): 503-520. [16]俞年年, 项金钟, 郑文杰. Monel K-500合金的热变形行为及热加工图[J]. 热加工工艺, 2018, 47(7): 172-176. Yu Niannian, Xiang Jinzhong, Zheng Wenjie. Hot deformation behavior and hot processing map of Monel K-500 alloy[J]. Hot Working Technology, 2018, 47(7): 172-176. |