[1]Pickering E, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects[J]. International Materials Reviews, 2016, 61(3): 183-202. [2]Miracle D, Miller J, Senkov O, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16(1): 494-525. [3]Miracle D B , Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [4]Diao H Y, Feng R, Dahmen K A. Fundamental deformation behavior in high-entropy alloys: An overview[J]. Current Opinion in Solid State and Materials Science, 2017, 21(5): 252-265. [5]Chou H P, Chang Y S, Chen S K, et al. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J]. Materials Science and Engineering B, 2009, 163(3): 184-189. [6]Tang Z, Yuan T, Tsai C W. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy[J]. Acta Materialia, 2015, 99: 247-258. [7]Huang Y S, Chen L, Lui H W, et al. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0. 5NiFe high-entropy alloy[J]. Materials Science and Engineering A, 2007, 457(1/2): 77-83. [8]Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys[J]. Acta Materialia, 2012, 60(16): 5723-5734. [9]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [10]Poletti M G, Fiore G, Gili F, et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+5at% of C[J]. Materials and Design, 2017, 115: 247-254. [11]Lu Y, Dong Y, Guo S, et al. Apromising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4: 6200. [12]He F, Wang Z, Shang X, et al. Stability of lamellar structures in CoCrFeNiNbx, eutectic high entropy alloys at elevated temperatures[J]. Materials and Design, 2016, 104: 259-264. [13]杜兴宇. CrMnFeCoNi系高熵合金的组织及低温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Du Xingyu. Research on microstructure and cryogenenic of CrMnFeCoNi high entropy alloys[D]. Harbin: Harbin Institute of Technology, 2018. [14]Huo W, Zhou H, Fang F, et al. Microstructure and properties of novel CoCrFeNiTax, eutectic high-entropy alloys[J]. Journal of Alloys and Compounds, 2017, 735: 897-904. [15]Tan Y, Li J, Wang J, et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy[J]. Intermetallics, 2017, 85: 74-79. [16]Gao X, Lu Y, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59-66. [17]Yang W, Messler R W, Felton L E. Microstructure evolution of eutectic Sn-Ag solder joints[J]. Journal of Electronic Materials, 1994, 23(8): 765-772. [18]Zhu H, Seo D Y, Maruyama K. Interfacial strengthening of β phase in a fully lamellar structure of TiAl alloy containing W[J]. Philosophical Magazine Letters, 2005, 85(7): 377-385. [19]Yashiharu Waku. Mechanical properties and thermal stability of oxide eutectic composites at high temperatures[J]. Advanced Manufacturing Processes, 1998, 13(6): 841-858. [20]Dahle A K, Nogita K, Mcdonald S D, et al. Eutectic modification and microstructure development in Al-Si alloys[J]. Materials Science and Engineering A, 2005, 413(6): 243-248. [21]Yang J, Wang J N, Wang Y, et al. Control of the homogeneity of the lamellar structure of a TiAl alloy refined by heat treatment[J]. Intermetallics, 2001, 9(5): 369-372. [22]Rios C T, Ferrandini P L, Milenkovica S, et al. Growth and microstructure evolution of the Nb2Al-Al3Nb eutectic in situ composite[J]. Materials Characterization, 2005, 54(3): 187-193. [23]张立春, 王金国, 陈国良, 等. γ-TiAl基两相合金中非平衡片层组织的热稳定性[J]. 北京科技大学学报, 1997(1): 79-84. Zhang Lichun, Wang Jinguo, Chen Guoliang, et al. Thermal stability of nonequilibrium lamellae structure in γ-TiAl based two phase alloy[J]. Journal of Beijing University of Science and Technology, 1997(1): 79-84. [24]Cline H E. Shape instabilities of eutectic composites at elevated temperatures[J]. Acta Metallurgica, 1971, 19(6): 481-490. [25]Sharma G, Ramanujan R V, Tiwari G P. Instability mechanisms in lamellar microstructures[J]. Acta Materialia, 2000, 48(4): 875-889. [26]Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking fault mediated deformation in a CoCrNi-based medium-entropy alloy[J]. Acta Meterialia, 2017, 138: 72-82. [27]Moravcik I, Cizek J, Kovacova Z, et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy[J]. Materials Science and Technology A, 2017, 701: 70-80. |