[1]Ludwig T H, Schaffer P L, Arnberg L. Influence of phosphorus on the nucleation of eutectic silicon in Al-Si alloys[J]. Metallurgical and Materials Transactions A, 2013, 44(13): 5796-5805. [2]Dang B, Jian Z Y, Xu J F, et al. Effect of phosphorus and heat treatment on microstructure of Al-25%Si alloy[J]. China Foundry, 2017, 14(1): 10-15. [3]Zhao L Z, Zhao M J, Song L J, et al. Ultra-fine Al-Si hypereutectic alloy fabricated by direct metal deposition[J]. Materials and Design, 2014, 56(4): 542-548. [4]Pozdniakov A V, Glavatskikh M V, Makhov S V, et al. The synthesis of novel powder master alloys for the modification of primary and eutectic silicon crystals[J]. Materials Letters, 2014, 128(10): 325-328. [5]Zhang Henghua, Duan Haili, Shao Guangjie, et al. Microstructure and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P[J]. Rare Metals, 2008, 27(1): 59-63. [6]李华基, 吴玉露, 胡慧芳. Al-24%Si过共晶合金的磷锶变质效果研究[J]. 热加工工艺, 2010, 39(17): 35-38. Li Huaji, Wu Yulu, Hu Huifang. Study on influence of P and Sr on modification effects of hypereutectic Al-24%Si alloy[J]. Hot Working Technology, 2010, 39(17): 35-38. [7]Wang J, He S, Sun B, et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys[J]. Materials Science and Engineering A, 2002, 338(1): 101-107. [8]Feng H K, Yu S R, Li Y L, et al. Effrct of ultrasonic treatmeng on microstructures of hypereutectic Al-Si alloy[J]. Journal of Materials Processing Technology, 2008, 208: 330-335. [9]Das A, Kotadia H R. Effect of high-intensity ulrasonic irradiation on the modification of solidification microstrostructure in a Si-rich hypoectectic Al-Si alloy[J]. Materials Chemistry and Physics, 2011, 125: 853-859. [10]Dang B, Jian Z Y, Xu J F, et al. Effect of phosphorus and heat treatment on microstructure of Al-25%Si alloy[J]. China Foundry, 2017, 14(1): 10-15. [11]Cheng S, Wang Y D, Choo H, et al. An assessment of the contributing factors to the superior properties of a nanostructured steel using in situ high-energy X-ray diffraction[J]. Acta Materialia, 2010, 58(7): 2419-2429. [12]Blondé R, Jimenez-Melero E, Zhao L, et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels[J]. Acta Materialia, 2012, 60(2): 565-577. [13]Yan K, Liss K D, Timokhina I B, et al. In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel[J]. Materials Science and Engineering A, 2016, 662: 185-197. [14]Ran S, Nie Z, Fan Q, et al. Elastic plastic deformation of TC6 titanium alloy analyzed by in-situ synchrotron based X-ray diffraction and microstructure based finite element modeling[J]. Journal of Alloys and Compounds, 2016, 688: 787-795. [15]Lu L, Huang J W, Fan D, et al. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron X-ray imaging and diffraction[J]. Acta Materialia, 2016, 120: 86-94. [16]Lin J, Han X, Heuser B J, et al. Study of the mechanical behavior of the hydride blister/rim structure inzircaloy-4 using in-situ synchrotron X-ray diffraction[J]. Journal of Nuclear Materials, 2016, 471: 299-307. |