[1]Hu J, Du L X, Wang J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel[J]. Materials Science and Engineering A, 2012, 554: 79-85. [2]范长刚, 董 瀚, 雍岐龙, 等. 低合金超高强度钢的研究进展[J]. 机械材料工程, 2006, 30(8): 1-4. Fan Changgang, Dong Han, Yong Qilong, et al. Research development of ultra-high strength low alloy steels[J]. Materials for Mechanical Engineering, 2006, 30(8): 1-4. [3]Bhadeshi H K D H, Honeycomb R W K. Steels: Microstructure and Properties[M]. 3rd edition. Butterworth-Heinemann, London, 2006. [4]焦增宝, 刘锦川. 新型纳米强化超高强度钢的研究与进展[J]. 中国材料进展, 2011, 12(30): 6-12. Jiao Zengbao, Liu Jinchuan. Research and development of advanced nano-precipitate strengthened ultra-high strength steels[J]. Materilas China, 2011, 12(30): 6-12. [5]Xu G, Gan X L, Ma G J, et al. The development of Ti-alloyed high strength microalloy steel[J]. Materials and Design, 2010, 31(6): 2891-2896. [6]Hu H J, Xu G, Wang L, et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels[J]. Materials and Design, 2015, 84: 95-99. [7]Slater C, Mandal A, Davis C. The influence of segregation of Mn on the recrystallization behavior of C-Mn steels[J]. Metallurgical and Materials Transactions B, 2019, 50(4): 1627-1636. [8]Hajyakbary F , Sietsma J, Petrov R H, et al, A quantitative investigation of the effect of Mn segregation on microstructural properties of quenching and partitioning steels[J]. Scripta Materialia, 2017, 137: 27-30. [9]Xiao F R, Liao B, Shan Y Y, et al. Isothermal transformation of low-carbon microalloyed steels[J]. Materials Characterization, 2005, 54: 417-422. |