[1]Mariusz Kulczyk, Wacek Pachla, Jan Godek, et al. Improved compromise between the electrical conductivity and hardness of the thermo-mechanically treated CuCrZr alloy[J]. Materials Science and Engineering A, 2018, 724: 45-52. [2]Zhai W, Wang W L, Geng D L, et al. A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu-Sn alloys[J]. Acta Materialia, 2012, 60(19): 6518-6527. [3]Li Yaping, Zhu Xiao, Zhou Li, et al. Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity[J]. Journal of Alloys and Compounds, 2017, 723: 1162-1170. [4]Xia Chengdong, Zhang Wan, Kang Zhanyuan, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Materials Science and Engineering A, 2012, 538: 295-301. [5]李铸铁, 赵志国, 史丹丹, 等. 固溶时效对Al-4.6Cu-0.9Li合金组织与拉伸性能的影响[J]. 金属热处理, 2019, 44(1): 118-123. Li Zhutie, Zhao Zhiguo, Shi Dandan, et al. Effects of solution and aging on microstructure and tensile properties of Al-4.6Cu-0.9Li alloy[J]. Heat Treatment of Metals, 2019, 44(1): 118-123. [6]汪 黎, 孙扬善, 付小琴, 等. Cu-Ni-Si基引线框架合金的组织和性能[J]. 东南大学学报(自然科学版), 2005, 35(5): 729-732. Wang Li, Sun Yangshan, Fu Xiaoqin, et al. Microstructure and properties of Cu-Ni-Si based alloys for lead frame[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(5): 729-732. [7]陈金水, 王俊峰, 朱明彪, 等. Cu-Cr- Zr 系合金中 Zr 含量对初生相的影响[J]. 金属热处理, 2018, 43(7): 20-27. Chen Jinshui, Wang Junfeng, Zhu Mingbiao, et al. Effect of Zr content on primary phase in Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2018, 43(7): 20-27. [8]Xie Guoliang, Wang Qiangsong, Mi Xujun, et al. The precipitation behavior and strengthening of a Cu-2.0wt% Be alloy[J]. Materials Science and Engineering A, 2012, 558: 326-330. [9]Jia Yanlin, Wang Mingpu, Chen Chang, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy[J]. Journal of Alloys and Compounds, 2013, 557: 147-151. [10]张凌峰, 刘 平, 康布熙, 等. Cu-3.2Ni-0.75Si-0.30Zn合金时效过程的动力学分析[J]. 中国有色金属学报, 2003, 13(3): 717-721. Zhang Lingfeng, Liu Ping, Kang Buxi, et al. Kinetics of aging process of Cu-3.2Ni-0.75Si-0.30Zn alloy[J]. The Journal of Nonferrous Metals, 2003, 13(3): 717-721. [11]Zhao D M, Dong Q M, Liu P, et al. Aging behavior of Cu-Ni-Si alloy[J]. Materials Science and Engineering A, 2003, 361: 93-99. [12]Han S Z, Gu J H, Lee J H, et al. Effect of V addition on hardness and electrical conductivity in Cu-Ni-Si alloys[J]. Metals and Materials International, 2013, 19(4): 637-641. [13]Wu Yake, Li Ya, Lu Junyong, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy[J]. Materials Science and Engineering A, 2019, 742: 501-507. [14]Li Rengeng, Guo Enyu, Chen Zongning, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging[J]. Journal of Alloys and Compounds, 2019, 771: 1044-1051. [15]Huang F X, Ma J S, Ning H L, et al. Precipitation in Cu-Ni-Si-Zn alloy for lead frame[J]. Materials Letters, 2003, 57: 2135-2139. [16]肖翔鹏, 柳瑞清, 易志勇, 等. 二级时效形变对Cu-Cr-Zr-Mg合金组织与性能影响研究[J]. 材料导报, 2016, 30(12): 81-85. Xiao Xiangpeng, Liu Ruiqing, Yi Zhiyong, et al. Two-step deforming and aging research on microstructure and properties of Cu-Cr-Zr-Mg alloy[J]. Materials Review, 2016, 30(12): 81-85. [17]Wang Qiangsong, Xie Guoliang, Mi Xujun, et al. The precipitation and strengthening mechanism of Cu-Ni-Si-Co alloy[J]. Materials Science Forum, 2013, 749: 294-298. |