[1]陈若怀. 固溶处理对7A04铝合金组织与性能的影响[D]. 南宁: 广西大学, 2016. Chen Ruohuai. Microstructure and properties of 7A04 aluminum alloy[D]. Nanning: Guangxi University, 2016. [2]黄 奎, 宋丰轩, 任月路, 等. 时效制度对7A04铝合金铸造固溶处理板性能的影响[J]. 金属热处理, 2017, 42(7): 137-140. Huang Kui, Song Fengxuan, Ren Yuelu, et al. Effect of aging process on properties of solution treated 7A04 aluminum alloy cast plate[J]. Heat Treatment of Metals, 2017, 42(7): 137-140. [3]薛 杰, 李保永, 秦中环. 均匀化退火对7A04铝合金挤压材显微组织的影响[J]. 航天制造技术, 2018(6): 11-16. Xue Jie, Li Baoyong, Qin Zhonghuan. Effect of homogenization annealing on microstructure of extruded 7A04 aluminum alloy[J]. Aerospace Manufacturing Technology, 2018(6): 11-16. [4]李 虎, 赵君文, 王超群, 等. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029. Li Hu, Zhao Junwen, Wang Chaoqun, et al. Effects of aging stress on the mechanical properties and exfoliation corrosion resistance of 7A04 aluninum alloy with two-stage aging[J]. Materials Reports, 2019, 33(12): 2025-2029. [5]宋新华, 陈胜迁, 陈 立, 等. 二次固溶对7A04-T6铝合金蠕变时效效应的影响[J]. 金属热处理, 2018, 43(4): 82-87. Song Xinhua, Chen Shengqian, Chen Li, et al. Effect of secondary solution on creep aging behavior of 7A04-T6 aluminum alloy.[J]. Heat Treatment of Metals, 2018, 43(4): 82-87. [6]王超群, 赵君文, 李 虎, 等. 多级固溶对7A04铝合金的力学性能和剥落腐蚀性能的影响[J]. 中南大学学报(自然科学版), 2017, 48(6): 1458-1464. Wang Chaoqun, Zhao Junwen, Li Hu, et al. Effects of multi-stage solid-solution treatment on mechanical properties and exfoliation corrosion behavior of 7A04 aluminum alloy[J]. Journal of Central South University(Science and Technology), 2017, 48(6): 1458-1464. [7]秦清风, 谭迎新, 杨勇彪, 等. 晶粒尺寸对7A04铝合金热变形行为的影响研究[J]. 热加工工艺, 2016, 45(11): 59-63. Qin Qingfeng, Tan Yingxin, Yang Yongbiao, et al. Influence of grain sizes on hot deformation behavior of 7A04 aluminum alloy[J]. Hot Working Technology, 2016, 45(11): 59-63. [8]Guan Renguo, Jin Hongmei, Jiang Wensen, et al. Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al-Sc-Zr alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(5): 907-918. [9]徐雪芳, 王春华. 钪含量对7050铝合金组织与力学性能的影响[J]. 金属热处理, 2018, 43(9): 6-9. Xu Xuefang, Wang Chunhua. Effect of Sc on microstructure and mechanical properties of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(9): 6-9. [10]张笑宇, 冷 利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为[J]. 材料导报, 2017, 31(20): 63-67. Zhang Xiaoyu, Leng Li, Wang Zhanjun. Low cycle fatigue behavior of Al-Zn-Mg-Cu alloy containing Zr and Sc[J]. Material Review, 2017, 31(20): 63-67. [11]Zhang Jiayi, Hu Tao, Yi Danqing, et al. Double-shell structure of Al3(Zr, Sc) precipitate induced by thermomechanical treatment of Al-Zr-Sc alloy cable[J]. Journal of Rare Earths, 2019, 37(6): 668-672. [12]罗俊锋, 王欣平, 万小勇, 等. 热处理对Al-Cu合金电导率的影响[J]. 材料导报, 2011, 25(20): 11-14. Luo Junfeng, Wang Xinping, Wan Xiaoyong, et al. Effect of heat-treatment on electrical conductivity of Al-Cu Alloy[J]. Material Review, 2011, 25(20): 11-14. [13]高依飞. 回归再时效对7150铝合金的显微组织和断裂行为的影响[D]. 哈尔滨: 哈尔滨工业大学, 2018. Gao Yifei. Effect of retrogression and re-aging on microsturture and fracture behavior of 7150 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2018. |