[1]Couturier L, De Geuser F, Descoins M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Materials and Design, 2016, 107(10): 416-425. [2]Aghaiekhafri M, Adhami F. Hot deformation of 15-5 PH stainless steel[J]. Materials Science and Engineering A, 2010, 527(4/5): 1052-1057. [3]Abdelshehid M, Mahmodieh K, Mori K, et al. On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH stainless steel[J]. Engineering Failure Analysis, 2007, 14(4): 626-631. [4]庞慧芳, 付雪松, 杨思泽, 等. 时效对17-4PH马氏体不锈钢抗应力腐蚀性能的影响[J]. 金属热处理, 2015, 40(3): 104-108. Pang Huifang, Fu Xuesong, Yang Size, et al. Effect of aging process on stress corrosion resistance of 17-4PH martensite stainless steel[J]. Heat Treatment of Metals, 2015, 40(3): 104-108. [5]胡家齐, 梁剑雄, 曹呈祥, 等. 铸造15-5PH钢的拉伸性能及断口形貌[J]. 金属热处理, 2019, 44(9): 36-41. Hu Jiaqi, Liang Jianxiong, Cao Chengxiang, et al. Tensile properties and fracture morphologies of as-cast 15-5PH steel[J]. Heat Treatment of Metals, 2019, 44(9): 36-41. [6]Tavares S S M, Silva F J D, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel[J]. Corrosion Science, 2010, 52(11): 3835-3839. [7]Shen S, Li X, Zhang P, et al. Effect of solution-treated temperature on hydrogen embrittlement of 17-4 PH stainless steel[J]. Materials Science and Engineering A, 2017, 703(8): 413-421. [8]Palanisamy D, Senthil P, Senthilkumar V. The effect of aging on machinability of 15Cr-5Ni precipitation hardened stainless steel[J]. Archives of Civil and Mechanical Engineering, 2016, 16(1): 53-63. [9]Sha W, Cerezo A, Smith G D W. Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and conclusions[J]. Metallurgical Transactions A, 1993, 24(6): 1251-1256. [10]Murthy A S, Medvedeva J E, Isheim D, et al. Copper precipitation in cobalt-alloyed precipitation-hardened stainless steel[J]. Scripta Materialia, 2012, 66(11): 943-946. [11]魏 琪, 杨 明, 李 辉, 等. 钴对马氏体时效不锈钢模具堆焊焊丝堆焊层性能的影响[J]. 电焊机, 2012, 42(5): 51-54. Wei Qi, Yang Ming, Li Hui, et al. Effect of cobalt on the properties of martensitic stainless steel die surfacing layer[J]. Welding Machine, 2012, 42(5): 51-54. [12]Andersson J O, Helander T, Hglund L, et al. Thermo-Calc & DICTRA, computational tools for materials science[J]. Calphad Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26(2): 273-312. [13]刘振宝, 杨志勇, 梁剑雄, 等. 高强度不锈钢中逆转变奥氏体的形成动力学与析出行为[J]. 材料热处理学报, 2010, 31(6): 39-44. Liu Zhenbao, Yang Zhiyong, Liang Jianxiong, et al. Precipitation behavior and transformation kinetics of reverted austenite in ultra-high strength stai[J]. Transactions of Materials and Heat Treatment, 2010, 31(6): 39-44. [14]章伟钢, 周 芸, 刘少尊, 等. Mo与Co含量对18Ni马氏体时效钢性能的影响[J]. 金属热处理, 2018, 43(4): 48-52. Zhang Weigang, Zhou Yun, Liu Shaozun, et al. Effects of Mo and Co content on properties of 18Ni maraging steel[J]. Heat Treatment of Metals, 2018, 43(4): 48-52. [15]Luo H , Yu Q , Dong C , et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel[J]. Corrosion Science, 2018, 139(10): 185-196. |