[1]王春涛, 姚 杰. 压铸铝合金的研究进展[J]. 模具工业, 2019, 45(8): 1-5. Wang Chuntao, Yao Jie. Research progress of die casting aluminum alloy[J]. Die & Mould Industry, 2019, 45(8): 1-5. [2]许书洋, 左鹏鹏, 吴晓春. 硬度对H13热作模具钢热疲劳性能的影响[J]. 金属热处理, 2016, 41(8): 18-23. Xu Shuyang, Zuo Pengpeng, Wu Xiaochun. Effect of hardness on thermal fatigue of H13 hot work die steel[J]. Heat Treatment of Metals, 2016, 41(8): 18-23. [3]刘恒三, 祁晔思, 左玲立, 等. 新型H13基体钢的热稳定性[J]. 材料热处理学报, 2020, 41(7): 151-157. Liu Hengsan, Qi Yesi, Zuo Lingli, et al. Thermal stability of a novel H13 die steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 151-157. [4]王 斌. 热作模具钢发展现状[J]. 模具制造, 2017(2): 79-82. Wang Bing. Development status of hot work die steel[J]. Die & Mould Manufacture, 2017(2): 79-82. [5]苏兹聪, 曲宏强. H13钢压铸模早期开裂失效分析[J]. 金属热处理, 2010, 35(2): 80-83. Su Zicong, Qu Hongqiang. Failure analysis on early cracking of H13 steel casting die[J]. Heat Treatment of Metals, 2010, 35(2): 80-83. [6]陆佳晖, 闵永安, 岳加佳. 大型铝合金压铸模的性能均匀性与开裂机理[J]. 材料热处理学报, 2019, 40(3): 62-68. Lu Jiahui, Min Yongan, Yue Jiajia. Uniformity of properties and cracking mechanism of large-scale aluminum alloy casting die[J]. Transactions of Materials and Heat Treatment, 2019, 40(3): 62-68. [7]林星豪, 陈卫华, 吴世勇, 等. H13钢压铸模具开裂分析[J]. 失效分析与预防, 2019, 14(4): 265-268. Lin Xinghao, Chen Weihua, Wu Shiyong, et al. Cracking analysis of H13 steel die casting mould[J]. Failure Analysis and Prevention, 2019, 14(4): 265-268. [8]王 鹏, 张杰江, 胡亚民. H13钢的应用现状[J]. 模具制造, 2007(12): 6-12. Wang Peng, Zhang Jiejiang, Hu Yaming. The application of H13 steel[J]. Die & Mould Manufacture, 2007(12): 6-12. [9]Zhu J, Zhang Z, Xie J. Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism[J]. Materials Science and Engineering A, 2019, 752: 101-114. [10]王 稳, 程晓农, 韦家波, 等. 等温球化退火温度对超细化H13钢组织与力学性能的影响[J]. 金属热处理, 2019, 44(9): 161-165. Wang Wen, Cheng Xiaonong, Wei Jiabo, et al. Effect of isothermal spheroidization annealing temperature on microstructure and mechanical properties of ultra-fine H13 steel[J]. Heat Treatment of Metals, 2019, 44(9): 161-165. [11]韦家波, 程晓农, 张伯承, 等. 硬岩掘进盾构机刀圈的热处理[J]. 金属热处理, 2020, 45(2): 114-119. Wei Jiabo, Cheng Xiaonong, Zhang Bocheng, et al. Heat treatment of tunnel boring machine cutter ring for hard rock[J]. Heat Treatment of Metals, 2020, 45(2): 114-119. [12]张洪波, 黎军顽, 施渊吉, 等. H13钢硬度对其热疲劳行为影响的试验和数值研究[J]. 上海金属, 2016, 38(3): 28-38. Zhang Hongbo, Li Junwan, Shi Yuanji, et al. Experimental and numerical study of the influence of hardness on the thermal fatigue behavior of H13 steel[J]. Shanghai Metals, 2016, 38(3): 28-38. [13]田玉新. 热处理工艺对H13钢热疲劳性能的影响[J]. 热处理, 2018, 33(6): 37-43. Tian Yuxin. Effect of heat treatment process on thermal fatigue behavior of H13 steel[J]. Heat Treatment, 2018, 33(6): 37-43. [14]Speer J G, Edmoods D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 219-237. [15]Speer J G, Rizzo F C, Matlock D K, et al. The “quenching and partitioning” process: Background and recent progress[J]. Materials Research, 2005, 8(4): 417-423. [16]徐祖耀. 将淬火-碳分配-回火(Q-P-T)及塑性成形一体化技术用于TRIP钢的创议[J]. 热处理, 2010, 25(4): 1-5. Xu Zuyao. A preliminary suggestion of application of a unified technology combining quenching-partitioning-tempering process and plastic forming for TRIP steels[J]. Heat Treatment, 2010, 25(4): 1-5. [17]田亚强, 张宏军, 陈连生, 等. 低碳硅锰钢I&Q&P处理中C, Mn元素配分综合作用[J]. 材料工程, 2016, 44(4): 32-38. Tian Yaqiang, Zhang Hongjun, Chen Liansheng, et al. Comprehensive effect of C, Mn partitioning behavior on retained austenite of low carbon Si-Mn steel in I&Q&P process[J]. Journal of Materials Engineering, 2016, 44(4): 32-38. [18]胡心彬, 李 麟. H13钢热疲劳后碳化物形态和组分的变化[J]. 材料热处理学报, 2007, 28(6): 82-86. Hu Xinbin, Li Lin. Changes of morphology and composition of carbides in H13 steel after thermal fatigue[J]. Transactions of Materials and Heat Treatment, 2007, 28(6): 82-86. |