[1]孙 敏, 代朋超. 油气田用Inconel 718合金腐蚀性能研究综述[J]. 宝钢技术, 2017(2): 10-14. Sun Min, Dai Pengchao. Review on corrosion resistance properties of Inconel 718 alloy in oil and gas industry[J]. Baosteel Technology, 2017(2): 10-14. [2]周元贵, 彭志方, 陈方玉, 等. IN718合金时效后的组织及其典型元素分布特征[J]. 金属热处理, 2009, 34(6): 19-24. Zhou Yuangui, Peng Zhifang, Chen Fangyu, et al. Microstructure and typical elements distribution of IN718 alloy after aging treatment[J]. Heat Treatment of Metals, 2009, 34(6): 19-24. [3]Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation[J]. Acta Materialia, 2017, 128: 365-374. [4]Li Xinfeng, Zhang Jin, Fu Qinqin, et al. Tensile mechanical properties and fracture behaviors of nickel-based superalloy 718 in the presence of hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43: 20118-20132. [5]Zhang Zhenbo, Katie L Moore, Greg McMahon, et al. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy[J]. Corrosion Science, 2019, 146: 58-69. [6]Florian Galliano, Eric Andrieu, Christine Blanc, et al. Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718[J]. Materials Science and Engineering A, 2014, 611: 370-382. [7]Rezende M C, Araujo L S, Gabriel S B, et al. Hydrogen embrittlement in nickel-based superalloy 718: Relationship between γ′+γ″ precipitation and the fracture mode[J]. International Journal of Hydrogen Energy, 2015, 40(47): 17075-17083. [8]唐 瑞, 刘海定, 王东哲, 等. 油气工程用镍基耐蚀合金718的研究进展[J]. 金属热处理, 2018, 43(7): 54-59. Tang Rui, Liu Haiding, Wang Dongzhe, et al. Developing progress of oilfield-grade corrosion resistant alloy 718[J]. Heat Treatment of Metals, 2018, 43(7): 54-59. [9]Qu Fengsheng, Liu Xuguang, Xing Fei, et al. High temperature tensile properties of laser butt-welded plate of Inconel 718 superalloy with ultra-fine grains[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2379-2388. [10]Hong J K, Park J H, Park N K, et al. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding[J]. Journal of Materials Processing Technology, 2007, 201(1): 515-520. [11]郑传波, 唐祝君, 申小兰. 微观组织对2205双相不锈钢氢脆敏感性的影响[J]. 金属热处理, 2015, 40(9): 39-44. Zheng Chuanbo, Tang Zhujun, Shen Xiaolan. Effect of microstructure on hydrogen embrittlement of 2205 duplex stainless steel[J]. Heat Treatment of Metals, 2015, 40(9): 39-44. [12]Mei Yunpeng, Liu Yongchang, Liu Chenxi, et al. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718[J]. Materials and Design, 2016, 89: 964-977. [13]Jothi Sathiskumar, Merzlikin V Sergiy, Croft Nick, et al. An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718[J]. Journal of Alloys and Compounds, 2016, 664: 664-681. [14]Li Xinfeng, Li Qizhen, Wang Tan, et al. Hydrogen-assisted failure of laser melting additive manufactured IN718 superalloy[J]. Corrosion Science, 2019, 160: 108171. |