[1]Lijima Sumio. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. [2]Fan Genlian, Tan Zhanqiu, Guo Qiang, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy[J]. Carbon, 2018, 130: 333-339. [3]李 铮, 蔡晓兰, 周 蕾, 等. CNTs含量对CNTs/Al5083复合材料力学性能的影响[J]. 金属热处理, 2015, 40(1): 175-177. Li Zheng, Cai Xiaolan, Zhou Lei, et al. Effect of CNTs content on mechanical properties of CNTs/Al 5083 composite materials[J]. Heat Treatment of Metals, 2015, 40(1): 175-177. [4]杨 康, 孙红亮, 陈志远, 等. 镀镍碳纳米管/TiAl复合材料的制备与性能[J]. 金属热处理, 2019, 44(10): 166-169. Yang Kang, Sun Hongliang, Chen Zhiyuan, et al. Preparation and properties of Ni-CNTs/TiAl composite materials[J]. Heat Treatment of Metals, 2019, 44(10): 166-169. [5]Xu Z Y, Li C J, Li K R, et al. Carbon nanotube-reinforced aluminum matrix composites enhanced by grain refinement and in situ precipitation [J]. Journal of Materials Science, 2019, 54: 8655-8664. [6]Liu Z Y, Xiao B L, Xue P, et al. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43: 2161-2168. [7]Pham Van Trinh, Doan Dinh Phuong, Phan Ngoc Minh, et al. Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 126-137. [8]Liu Liang, Yi Jianhong, Li Caiju, et al. Well-dispersion of CNTs and enhanced mechanical properties in CNTs/Cu-Ti composites fabricated by molecular level mixing[J]. Journal of Alloys and Compounds, 2017, 726: 81-87. [9]He Chunnian, Shi Chunsheng, Du Xiwen, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced al-matrix composites[J]. Advanced Materials, 2017, 19: 1128-1132. [10]Xu Run, Xiong Dingbang, Fan Genlian, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling[J]. Composites Part A: Applied Science and Manufacturing, 2017, 96: 57-66. [11]Chen Malin, Tan Zhanqiu, Xiong Dingbang, et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites[J]. Materials and Design, 2018, 142: 288-296. [12]Zhao Qi, Liu Yichun, Yi Jianhong. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes[J]. Applied Surface Science, 2017, 409: 164-168. [13]Zhou Weiwei, Kawasaki Akira. Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment[J]. Carbon, 2014, 78: 121-129. [14]Zhou Weiwei, Kurit Hiroki, Miyazaki Takamichi, et al. Interface and interfacial reactions in multi-walled carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2016, 96: 919-928. [15]Chen B, Ye X, Mai H I, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2017, 114: 198-208. [16]Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites[J]. Carbon, 2017, 115: 720-729. [17]Farhad Saba, Seyed A, Sajjadi, et al. Pulsed current field assisted surface modification of carbon nanotubes with nanocrystalline titanium carbide[J]. Carbon, 2016, 101: 261-271. [18]Liu Liang,Yi Jianhong, Fang Dong. Fabrication of CNT/Cu composites with enhanced strength and ductility by SP combined with optimized SPS method[J]. Journal of Alloys and Compounds, 2018, 747: 91-99. [19]Cheng Bowen,Yi Jianhong, Li Caiju, et al. Interface optimization of CNT/Cu composite by forming TiC nanoprecipitation and low interface energy structure via spark plasma sintering[J]. Journal of Alloys and Compounds, 2017, 722: 852-858. [20]Liu X Q, Li C J, Yi J H, et al. Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC[J]. Journal of Alloys and Compounds, 2018, 765: 98-105. [21]Guo Baisong, Song Ni, Shen Rujuan, et al. Fabrication of Ti-Al3Ti core-shell structured particle reinforced Al based composite with promising mechanical properties[J]. Materials Science and Engineering A, 2015, 639: 269-273. [22]Liu Xiaoqing, Li Caiju, Prashanth Konda Gokuldoss, et al. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites[J]. Materials Characterization, 2017, 133: 122-132. |