[1]许 丁, 辛选荣. 合金钢50SiMnVB高温力学性能研究[J]. 热加工工艺, 2015, 44(10): 110-112. Xu Ding, Xin Xuanrong. Research on high temperature mechanical properties of 50SiMnVB alloy steel[J]. Hot Working Technology, 2015, 44(10): 110-112. [2]Tiamiyu A A, Szpunar J A, Odeshi A G. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: Grain size effect[J]. Materials Characterization, 2019, 154(5): 7-19. [3]Duan C Z, Zhang L C. Adiabatic shear banding in AISI 1045 steel during high speed machining: Mechanisms of microstructural evolution[J]. Materials Science and Engineering A, 2011, 532(10): 111-119. [4]刘峰涛, 袁书强, 陈 炯, 等. 高能束控制破碎弹体威力对比研究[J]. 兵器材料科学与工程, 2008(1): 67-70. Liu Fengtao, Yuan Shuqiang, Cheng Jiong, et al. Comparative study on the shell power after high-energy-beam controlled fragmentation[J]. Ordnance Material Science and Engineering, 2008(1): 67-70. [5]陈 炯, 袁书强, 周春华, 等. 高能束控制破碎钨合金壳体破碎效果研究[J]. 兵器材料科学与工程, 2010, 33(6): 62-64. Chen Jiong, Yuan Shuqiang, Zhou Chunhua, et al. Fragmentation effect of tungsten alloy shells controlled by high-energy-beam[J]. Ordnance Material Science and Engineering, 2010, 33(6): 62-64. [6]李 华, 李国昌, 陈 炯, 等. 高能束控制破碎模拟弹体破片分布试验研究[J]. 兵器材料科学与工程, 2009, 32(5): 81-84. Li Hua, Li Guochang, Chen Jiong, et al. Fragment distribution of high-energy-beam controlled fragmentation simulation shell[J]. Ordnance Material Science and Engineering, 2009, 32(5): 81-84. [7]吴 昊. 两种合金钢动态性能与圆筒爆轰加载条件下破片特征关系研究[D]. 北京: 北京理工大学, 2015. Wu Hao. Study on the relations between the dynamic properties of two alloy steels and the fragmentation characteristics of exploded cylinders[D]. Beijing: Beijing Institute of Technology, 2015. [8]尹建山, 孙艳东. 调质状态下58SiMn钢在预制破片弹弹体上的应用研究[J]. 弹箭与制导学报, 1995(3): 60-64. Yin Jianshan, Sun Yandong. Application study of 58SiMn steel in prefabricated fragmentation shell under tempering treatment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 1995(3): 60-64. [9]宋顺成, 王立彬, 袁书强, 等. 弹带槽底压力作用下的弹体复合结构应力分析[J]. 兵器材料科学与工程, 1998(5): 28-31. Song Shuncheng, Wang Libin, Yuan Shuqiang, et al. Analysis of stresses for projectile structure under pressure in its band notch[J]. Ordnance Material Science and Engineering, 1998(5): 28-31. [10]Wang Y, Zeng W, Sun X, et al. The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures[J]. Materials Science and Engineering A, 2016, 677: 325-331. [11]Huang B, Miao X, Luo X, et al. Microstructure and texture evolution near the adiabatic shear band (ASB) in TC17 titanium alloy with starting equiaxed microstructure studied by EBSD[J]. Materials Characterization, 2019, 151: 151-165. [12]Peirs J, Verleysen P, Degrieck J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[J]. International Journal of Impact Engineering, 2009, 37(6): 703-714. [13]张叶成, 张 津, 孙智富, 等. 58SiMn钢热压缩过程中的再结晶行为模拟[J]. 武汉理工大学学报, 2010, 32(1): 70-73. Zhang Yecheng,Zhang Jin, Sun Zhifu, et al. Simulation of recrystallization behavior of 58SiMn steel during hot compression[J]. Journal of Wuhan University of Technology, 2010, 32(1): 70-73. |