[1]王玉柱, 于树志, 安志欣, 等. 锰铜基防振合金的高阻尼特性[J]. 特种铸造及有色合金, 1989(1): 35-42. Wang Yuzhu, Yu Shuzhi, An Zhixin, et al. High-damping character of Mn-Cu alloys[J]. Special Casting and Nonferrous Alloys, 1989(1): 35-42. [2]卢凤双, 芮永岭, 田宇鹏, 等. M2052高阻尼合金的研究及应用[J]. 金属功能材料, 2013, 20(4): 43-48. Lu Fengshuang, Rui Yongling, Tian Yupeng, et al. Research and application of M2052 high damping alloys[J]. Metallic Functional Materials, 2013, 20(4): 43-48. [3]Baik S H. High damping Fe-Mn martensitic alloys for engineering applications[J]. Nuclear Engineering and Design, 2000, 198(3): 241-252. [4]史玉升, 李瑞迪, 章文献, 等. 不锈钢粉末的选择性激光熔化快速成形工艺研究[J]. 电加工与模具, 2010(S1): 67-72. Shi Yusheng, Li Ruidi, Zhang Wenxian, et al. Study on the technique during selective laser melting of stainless steel powder[J]. Electro Machining and Mould, 2010(S1): 67-72. [5]付立定, 史玉升, 章文献, 等. 316L不锈钢粉末选择性激光熔化快速成形的工艺研究[J]. 应用激光, 2008, 28(2): 108-111. Fu Liding, Shi Yusheng, Zhang Wenxian, et al. The process research of 316L stainless steel in selective laser melting[J]. Applied Laser, 2008, 28(2): 108-111. [6]杨启云. 选区激光熔化成形用Inconel 625合金粉末及制品的性能研究[D]. 北京: 机械科学研究总院, 2016. Yang Qiyun. Study on properties of Inconel 625alloy powder and products in selective laser melting[D]. Beijing: General Research Institute of Mechanical Science, 2016. [7]张 飞, 高正江, 马 腾, 等. 增材制造用金属粉末材料及其制备技术[J]. 工业技术创新, 2017, 4(4): 63-67. Zhang Fei, Gao Zhengjiang, Ma Teng, et al. Metal power materials for additive manufacturing and their preparation methods[J]. Industrial Technology Innovation, 2017, 4(4): 63-67. [8]汪承杰. M2052高阻尼合金SLM成形工艺及组织性能研究[D]. 北京: 北京工业大学, 2018: 1-53. Wang Chenjie. Study on the process microstructure and properties of M2052high damping alloy[D]. Beijing: Beijing Industry University, 2018: 1-53. [9]张光钧, 吴培桂, 许佳宁, 等. 激光熔覆的应用基础研究进展[J]. 金属热处理, 2011, 36(1): 5-13. Zhang Guangjun, Wu Peigui, Xu Jianing, et al. Development of basic research for application of laser cladding technology[J]. Heat Treatment of Metals, 2011, 36(1): 5-13. [10]刘 丹, 陈志勇, 陈科培, 等. TC4钛合金表面激光熔覆复合涂层的组织和耐磨性[J]. 金属热处理, 2015, 40(3): 58-62. Liu Dan, Chen Zhiyong, Chen Kepei, et al. Microstructure and wear resistance of laser clad composite coating on TC4 titanium alloy surface[J]. Heat Treatment of Metals, 2015, 40(3): 58-62. [11]孙 骁. 选区激光成形用IN718合金粉末特性及成形件组织结构的研究[D]. 重庆: 重庆大学, 2014. Sun Xiao. IN718 powder characteristics used in selective laser melting and microstructures of selective laser melted IN718 sample[D]. Chongqing: Chongqing University, 2014. [12]邓华铭, 陈树川. 锰基高阻尼合金的研究进展[J]. 金属功能材料, 2000, 7(2): 1-6. Deng Huaming, Chen Shuchuan. General review of present research on Mn-based high damping alloys[J]. Metallic Functional Materials, 2000, 7(2): 1-6. [13]Vitek J M, Warlimont H. On a metastable miscibility gap in Î3-Mn-Cu alloys and the origin of their high damping capacity[J]. Metal Science Journal, 2013, 10(1): 7-13. [14]王丽萍, 郭二军, 姚秀荣, 等. Mn-Cu阻尼合金时效过程中晶体结构的变化[J]. 中国有色金属学报, 2003, 13(1): 46-50. Wang Liping, Guo Erjun, Yao Xiurong, et al. Crystal structure changes of Mn-Cu damping alloy at aging[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(1): 46-50. [15]史玉升, 李瑞迪, 章文献, 等. 不锈钢粉末的选择性激光熔化快速成形工艺研究[C]//第13届全国特种加工学术会议论文集. 哈尔滨: 哈尔滨工业大学出版社, 2009: 479-487. [16]王力田, 葛庭燧. MnCu合金马氏体相变和马氏体的内耗[J]. 金属学报, 1988, 24(3): 147-154. Wang Litian, Ge Tingsui. Internal friction in martensite and martensitic transformation in MnCu alloys[J]. Acta Metallurgica Sinica, 1988, 24(3): 147-154. [17]臧艳艳. 18Ni-300马氏体时效钢选区激光熔化成形组织性能研究[D]. 重庆: 重庆大学, 2019. Zang Yanyan. Mechanical and microstructural investigation of 18Ni-300 Maraging steel manufactured by selective laser melting[D]. Chongqing: Chongqing University, 2019. [18]张伟祥, 唐超兰, 陈志茹, 等. 退火温度对激光选区熔化成形TC4钛合金组织及力学性能的影响[J]. 金属热处理, 2019, 44(6): 122-127. Zhang Weixiang, Tang Chaolan, Chen Zhiru, et al. Effect of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting[J]. Heat Treatment of Metals, 2019, 44(6): 122-127. [19]Nosova G I. FCC → FCT martensitic transformation in two-phase Mn-Cu alloys[J]. Russian Metallurgy, 2017(3): 216-220. [20]凌 闯. 热处理和变形对锰铜合金微观组织和阻尼性能的影响[D]. 重庆: 重庆大学, 2011. Ling Chuang.Effects of heat treatment and deformation on microstructure and damping capacity of Mn-Cu alloys[D]. Chongqing: Chongqing University, 2011. [21]李金柳. 微量Fe、Sn、Si元素对Mn-Cu-Al基合金阻尼性能的影响[D]. 重庆: 西南交通大学, 2015. Li Jinliu. The effect of Fe, Sn, Si alloying elements on the damping capacity of Mn-Cu-Al based alloys[D]. Chongqing: Southwest Jiaotong University, 2015. [22]陈 琳. 高锰MnNi基合金阻尼和力学性能研究[D]. 南昌: 南昌大学, 2016. Chen Lin. Study on damping capacity and mechanical properties of the Mn-rich MnNi based alloys[D]. Nanchang: Nanchang University, 2016. [23]甘章华, 梁 宇, 王锦林, 等. 热处理工艺对TC4钛合金组织及硬度的影响[J]. 金属热处理, 2014, 39(9): 36-40. Gan Zhanghua, Liang Yu, Wang Jinlin, et al. Effects of heat treatment process on microstructure and hardness of TC4 titanium alloy[J]. Heat Treatment of Metals, 2014, 39(9): 36-40. [24]邓德伟, 陈 蕊, 田 鑫, 等. 热处理对17-4PH马氏体不锈钢显微组织及性能的影响[J]. 金属热处理, 2013, 38(4): 32-36. Deng Dewei, Chen Rui, Tian Xin, et al. Influence of heat treatment on microstructure and properties of 17-4PH martensitic stainless steel[J]. Heat Treatment of Metals, 2013, 38(4): 32-36. [25]徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6. Xu Zuyao. Strengthening mechanism of modulated structure initiated by Spinodal decomposition[J]. Acta Metallurgica Sinica, 2011, 47(1): 1-6. |