[1]刘家奇, 宋明磊, 陈传忠, 等. 钛合金表面激光熔覆技术的研究进展[J]. 金属热处理, 2019, 44(5): 87-96. Liu Jiaqi, Song Minglei, Chen Chuanzhong, et al. Research progress of laser cladding technology on surface of titanium alloy[J]. Heat Treatment of Metals, 2019, 44(5): 87-96. [2]于希辰, 王志文, 刘海青, 等. 后热处理对激光熔覆涂层应用的研究进展[J]. 金属热处理, 2019, 44(3): 114-119. Yu Xichen, Wang Zhiwen, Liu Haiqing, et al. Research progress of application of post heat-treatment on laser cladded coatings[J]. Heat Treatment of Metals, 2019, 44(3): 114-119. [3]Wang D Z, Hu Q W, Zeng X Y. Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2015, 274: 51-59. [4]Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology, 2010, 205(7): 2007-2015. [5]Zen X Y, Wu X W, Tao Z Y, et al. Abrasive wear resistance analyses of laser clad Ni-WC ceramic-metal composite coatings[J]. Acta Metallrugica Sinica, 1997, 33(8): 885-890. [6]Gu D, Shen Y, Zhao L, et al. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering[J]. Materials Science and Engineering A, 2007, 445-446: 316-322. [7]郑 强, 张有凤, 任江伟, 等. 预置粉末成分对激光熔覆Ti合金复合涂层组织与性能的影响[J]. 金属热处理, 2019, 44(3): 129-133. Zheng Qiang, Zhang Youfeng, Ren Jiangwei, et al. Effect of pre-powder content on microstructure and properties of laser cladd Ti alloy composite coating[J]. Heat Treatment of Metals, 2019, 44(3): 129-133. [8]Comesaña R, Lusquiños F, Val J D, et al. Calcium phosphate grafts produced by rapid prototyping based on laser cladding[J]. Journal of the European Ceramic Society, 2011, 31(1): 29-41. [9]Wang D, Tian Z, Wang J, et al. A method of crack control in laser cladding process with changing power density distribution of laser beam[J]. Chinese Journal of Lasers, 2011, 38(1): 82-86. [10]Li Q, Ouyang J H, Lei T Q, et al. Recent development in laser cladding of materials surfaces[J]. Material Science and Technology, 1996(4): 22-36. [11]Guo S R, Guo X F, Yi Y J, et al. Properties of diode laser gas nitriding coatings on the surface of titanium alloy[J]. Surface Technology, 2016(9): 212-217. [12]Lu Q L, Wang Y F, Xiao L J, et al. Effects of La2O3 on microstructure and properties of laser clad Fe-based amorphous composite coatings[J]. Materials Science Ferum, 2013, 749: 583-588. [13]Zhong M L, Liu W J, Ren J L. The critical influence factors on crack formation during high power CO_2 laser cladding of NiCrSiB alloy by powder feeding[J]. Applied Laser, 2000(5): 3-7, 34. [14]付福兴, 畅庚榕, 赵小侠,等. 激光光斑直径对熔覆层裂纹的影响[J]. 激光与光电子学进展, 2015, 52(3): 178-181. Fu Fuxing, Chang Gengrong, Zhao Xiaoxia, et al. Influence of laser spot diameter on cladding layer cracking[J]. Laser and Optoelectronics Progress, 2015, 52(3): 178-181. [15]刘海青, 葛 超, 王志文, 等. 激光熔覆复合涂层裂纹控制研究进展[J]. 金属热处理, 2018, 43(8): 228-232. Liu Haiqing, Ge Chao, Wang Zhiwen, et al. Research progress on crack control of laser clad composite coating[J]. Heat Treatment of Metals, 2018, 43(8): 228-232. [16]李振纲, 彭 波. 激光熔覆层裂纹的形成机理及控制措施[J]. 材料保护, 2016, 49(11): 61-66. Li Zhengang, Peng Bo. Cracking formation mechanism and control methods for laser cladding coatings[J]. Materials Protection, 2016, 49(11): 61-66. [17]Sun S T, Fu H G, Chen S Y, et al. A numerical-experimental investigation of heat distribution, stress field and crack susceptibility in Ni60A coatings[J]. Optics and Laser Technology, 2019, 117: 175-185. [18]Zhu G X, Zhang A F, Li D C. Effect of process parameters on surface smoothness in laser cladding[J]. Chinese Journal of Lasers, 2010, 37: 296-301. [19]Fu F, Zhang Y, Chang G, et al. Analysis on the physical mechanism of laser cladding crack and its influence factors[J]. Optik, 2016, 127(1): 200-202. [20]Huang Y, Zeng X. Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding[J]. Applied Surface Science, 2010, 256(20): 5985-5992. [21]刘鹏良, 孙文磊, 黄 勇. 温度梯度对激光熔覆层裂纹产生的影响[J]. 激光技术, 2019, 43(3): 392-396. Liu Pengliang, Sun Wenlei, Huang Yong. Effect of temperature gradient on cracks in laser cladding layer[J]. Laser Technology, 2019, 43(3): 392-396. [22]Dai Q L, Luo C B, You F Y. Crack restraining methods and their effects on the microstructures and properties of laser cladded WC/Fe coatings[J]. Materials, 2018, 11: 2541. [23]Ya W, Pathiraj B, Matthews T A David, et al. Cladding of Tribaloy T400 on steel substrates using a high power Nd: YAG laser[J]. Surface and Coatings Technology, 2018, 350: 323-333. [24]Lu Y Z, Huang G K, Wang Y Z, et al. Crack-free Fe-based amorphous coating synthesized by laser cladding[J]. Materials Letters, 2018, 210: 46-50. [25]Zhou S F, Xu Y B, Liao B Q, et al. Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding[J]. Optics and Laser Technology, 2018, 103: 8-16. [26]Jiang F, Cheng L, Zhang J, et al. Fabrication of barium-strontium aluminosilicate coatings on C/SiC composites via laser cladding[J]. Journal of Materials Science and Technology, 2017, 33(2): 166-171. [27]Shu D, Li Z, Zhang K, et al. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding[J]. Materials Letters, 2017, 195: 178-181. [28]Santhanakrishnan S, Kong F, Kovacevic R. An experimentally based thermokinetic hardening model for high power direct diode laser cladding[J]. Journal of Materials Processing Technology, 2011, 211: 1247-1259. [29]郑启池, 金亚娟, 李瑞峰,等. 功率输入对激光熔覆镍基涂层组织和裂纹生成的影响[J]. 江苏科技大学学报(自然科学版), 2017(3): 293-297. Zheng Qichi, Jin Yajuan, Li Ruifeng, et al. Effect of power input on microstructure and crack formation of Ni based coating by laser cladding[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2017(3): 293-297. [30]Nakki J, Tuominen J, Vuoristo P. Effect of minor elements on solidification cracking and dilution of alloy 625 powders in laser cladding[J]. Journal of Laser Applications, 2017, 29(1): 012014. [31]Zhang T, Sun R. Study on pores and crack sensitivity of Ni-based composite coating by laser cladding[J]. IOP Conference Series: Materials Science and Engineering, 2015, 87: 012096. [32]Zhang M, Liu S S, Luo S X, et al. Effect of molybdenum on the high-temperature properties of TiC-TiB2, reinforced Fe-based composite laser cladding coatings[J]. Journal of Alloys and Compounds, 2018, 742: 383-390. [33]Yu T, Deng Q L, Dong G, et al. Influence of Ta on crack susceptibility and mechanical properties of laser clad Ni-based coating[J]. Chinese Journal of Mechanical Engineering, 2011, 47(22): 25-30. [34]Deng Q L, Fu W, Fang H Y. Influence of Ta strengthening on microstructure and wear resistance of laser cladding Ni45 coating[C]// Materials Science Forum. 2017, 893: 323-329. [35]Wang C L, Gao Y, Zeng Z C, et al. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al[J]. Journal of Alloys and Compounds, 2017, 727: 278-285. [36]Li M, Han B, Wang Y, et al. Effects of La2O3 on the microstructure and property of laser cladding Ni-based ceramic coating[J]. Optik, 2017, 130: 1032-1037. [37]Zhao T, Cai X, Wang S X, et al. Effect of CeO2 on microstructure and corrosive wear behavior of laser cladded Ni/WC coating[J]. Thin Solid Films, 2000, 379(1/2): 128-132. [38]Xie S Y, Li R D, Yuan T C, et al. Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics and Laser Technology, 2017(9): S0030399217302037. [39]Jiang F L, Li C, Wang Y L, et al. Effect of applied angle on the microstructure evolution and mechanical properties of laser clad 3540 Fe/CeO2 coating assisted by in-situ ultrasonic vibration[J]. Materials Research Express, 2019, 6(8). DOI: 10. 1088/2053-1591/ab2954. [40]Zhai L L, Ban C Y, Zhang J W. Investigation on laser cladding Ni-base coating assisted by electromagnetic field[J]. Optics and Laser Technology, 2019, 114: 81-88. |