[1] 李激光,张金栋,黄海亮,等.高强汽车用钢的研究现状及发展趋势[J].材料导报:纳米与新材料专辑,2012,26(1):397-401. Li Jiguang,Zhang Jindong,Huang Hailiang,et al.Research status and development trend of high-strength automotive steel[J].Materials Herald:Nano and New Materials Special Album,2012,26(1):397-401. [2] 陈 辉,景财年,涂英明,等.两相区保温及Q&P工艺对改善钢组织性能的分析[J].山东建筑大学学报,2016,31(3):244-248. Chen Hui,Jing Cainian,Tu Yingming,et al.Analysis of two-phase zone insulation and Q&P process to improve the performance of steel structure[J].Journal of Shandong Jianzhu University,2016,31(3):244-248. [3] 张文超,王焕然,陈大年,等.基于应变受控Hopkinson拉伸试验的QP980钢相变研究[J].兵工学报,2016(S2):232-236. Zhang Wenchao,Wang Huanran,Chen Danian,et al.Phase transformation study of QP980 steel based on strain controlled Hopkinson tensile test[J].Journal of Ordnance Engineering,2016(S2):232-236. [4] 连昌伟,陈新平,俞宁峰.高伸长率QP钢在高应变速率下的力学特性[J].锻压技术,2017,42(7):163-165. Lian Changwei,Chen Xinping,Yu Ningfeng.Mechanical properties of high elongation QP steel at high strain rate[J].Forging Technology,2017,42(7):163-165. [5] Ozturk F,Polat A,Toros S,et al.Strain hardening and strain rate sensitivity behaviors of advanced high strength steels[J].Journal of Iron and Steel Research International,2013,20(6):68-74. [6] 胡时胜,王礼立,宋 力,等.Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击,2014,34(6):641-652. Hu Shisheng,Wang Lili,Song Li,et al.Review of the development of Hopkinson pressure bar technology in China[J].Explosion and Shock,2014,34(6):641-652. [7] 余海燕,陈关龙,李淑慧,等.不同应变方式下TRIP钢中残余奥氏体的体积分数随应变量的变化[J].钢铁研究学报,2005,17(2):48-51. Yu Haiyan,Chen Guanlong,Li Shuhui,et al.The volume fraction of retained austenite in TRIP steel with different strains varies with the dependent variable[J].Journal of Iron and Steel Research,2005,17(2):48-51. [8] GB/T 34108—2017,金属材料高应变速率室温压缩试验方法[S].GB/T 34108—2017,High strain rate room temperature compression test method for metallic materials[S]. [9] 罗志强,李 南,李继康,等.分离式Hopkinson压杆试验技术的介绍[J].物理测试,2017,35(4):22-26. Luo Zhiqiang,Li Nan,Li Jikang,et al.Introduction of the separate Hopkinson pressure bar test technology[J].Physical Testing,2017,35(4):22-26. [10] Ravichandran G,Subhash G.Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J].Journal of the American Ceramic Society,1994,77(1):263-267. [11] 赵习金.分离式霍普金森压杆试验技术的改进和应用[D].长沙:国防科学技术大学,2003. Zhao Xijin.Improvement and application of separate Hopkinson pressure bar test technology[D].Changsha:National University of Defense Technology,2003. [12] 丁 磊,林建平,庞 政,等.考虑TRIP效应的QP980超高强度钢多相本构模型[J].塑性工程学报,2013,20(4):23-26. Ding Lei,Lin Jianping,Pang Zheng,et al.Multiphase constitutive model of QP980 ultra-high strength steel considering TRIP effect[J].Journal of Plasticity Engineering,2013,20(4):23-26. [13] Ding F,Tang D W,Wang C Y,et al.Microstructure of hardened steel at high temperature and high strain rate[J].Transaction of Nanjing University of Acronantics and Astronautics,2017,34(4):380-387. [14] Olson G B,Cohen M.Kinetics of strain-induced martensitic nucleation[J].Metallurgical Transactions A,1975,6(4):791-795. [15] 李 亮,何 宁,何 磊,等.高速铣削铝合金时切削力和表面质量影响因素的试验研究[J].工具技术,2002(12):14-17. Li Liang,He Ning,He Lei,et al.Experimental research on factors affecting cutting force and surface quality during high-speed milling of aluminum alloys[J].Tool Technology,2002(12):14-17. [16] 王丽娜,杨 平,毛卫民.高锰TRIP钢高速拉伸时的马氏体转变行为分析[J].金属学报,2016,52(9):1045-1052. Wang Lina,Yang Ping,Mao Weimin.Analysis of martensite transformation behavior of high manganese TRIP steel during high-speed stretching[J].Acta Metallurgica Sinica,2016,52(9):1045-1052. [17] Xiong X C,Chen B,Huang M X,et al.The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J].Scripta Materialia,2013,68(5):321-324. [18] Pychmintsev I Y,Savrai R A,De Cooman B C.High strain rate behavior of TRIP-aided automotive steels[C]//TRIP-Aided High Strength Ferrous Alloys Ghent.2002:299-302. [19] 徐祖耀.马氏体相变和马氏体[M].北京:科学出版社,1999. |