[1]祖木热提, 李生志, 孙 锋. Ti和Co对9Cr3W低活化耐热钢组织及性能的影响[J]. 材料研究学报, 2013, 10(9): 43-48. Zumrat, Li Shengzhi, Sun Feng. Effect of Ti and Co on the microstructure and mechanical property of reduced activation 9Cr3W steel[J]. Chinese Journal of Materials Research, 2013, 10(9): 43-48. [2]Zhou X S, Liu C X, Yu L M, et al. Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review[J]. Journal of Materials Science and Technology, 2015, 31(3): 235-242. [3]Jang M H, Moon J, Kang J Y, et al. Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels[J]. Materials Science and Engineering A, 2015, 647: 163-169. [4]康喜范, 杨长强, 荣 凡, 等. 耐蚀性和成型性优异的000Cr18M01-2Ti铁素体不锈钢[J]. 中国钢铁业, 2008(2): 26-35. Kang Xifan, Yang Changqiang, Rong Fan, et al.000Crl8Mol-2Ti ferritic stainless steels with corrosion resistance and superior formability [J]. China Steel, 2008(2): 26-35. [5]殷凤仕, 刘志良, 薛 冰, 等. 微量碳和氮对9%Cr耐热钢中第二相析出行为的影响[J]. 动力工程学报, 2010, 30(4): 28-32. Yin Fengshi, Liu Zhiliang, Xue Bing, et al.Effect of trace amounts of carbon and nitrogen on second phase precipitation of 9%Cr heat-resistant steels [J]. Journal of Chinese Society Power Engineering, 2010, 30(4): 28-32. [6]祖木热提·艾力尼牙孜. 核反应堆用铁素体/马氏体耐热钢成分设计及性能研究[D]. 上海: 上海交通大学, 2013. [7]张楚翘, 许志强, 尚仲夏, 等. 铁素体/马氏体钢P92在形变热处理过程中析出相的形成机理[J]. 金属热处理, 2019, 44(8): 1-6. Zhang Chuqiao, Xu Zhiqiang, Shang Zhongxia, et al. Formation mechanism of precipitate phases in ferritic/martensitic steel P92 during thermomechanical treatment[J]. Heat Treatment of Metals, 2019, 44(8): 1-6. [8]翁晓祥, 姜 勇, 郭晓峰, 等. 不同温度和应变速率下P92钢的高温拉伸特性[J]. 机械工程材料, 2016, 40(11): 115-118. Weng Xiaoxiang, Jiang Yong, Guo Xiaofeng, et al. High-temperature tensile characteristics of P92 steel at different temperatures and strain rates[J]. Materials for Mechanical Engineering, 2016, 40(11): 115-118. [9]周金华, 申勇峰. 低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展[J]. 材料导报, 2019(11): 1793-1800. Zhou Jinhua, Shen Yongfeng. Progress of MX type carbonitride reinforcement in reduced activated ferrite/martensitic heat-resistant steel[J]. Materials Review, 2019(11): 1793-1800. [10]陈国宏, 潘家栋, 刘俊建, 等. 650 ℃时效Super 304H耐热钢的显微结构与高温拉伸性能[J]. 材料热处理学报, 2013, 34(5): 103-109. Chen Guohong, Pan Jiadong, Liu Junjian, et al. Microstructure and high-temperature tensile properties of super 304H heat-resistant steel after ageing at 650 ℃[J]. Transactions of Materials and Heat Treatment, 2013, 34(5): 103-109. [11]José Garcia, Rojas D, Prat O, et al. 9% Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650 ℃[J]. Materials Science and Engineering A, 2011, 528(15): 5164-5176. [12]陈国宏, 潘家栋, 王家庆, 等. 650 ℃时效HR3C耐热钢的显微组织与高温拉伸性能[J]. 材料热处理学报, 2014, 35(2): 104-109. Chen Guohong, Pan Jiadong, Wang Jiaqing, et al. Microstructure and high-temperature tensile properties of HR3C heat-resistant steel after annealing at 650 ℃[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 104-109. |