[1]周荣灿, 范长信. 超超临界火电机组材料研究及选材分析[J]. 中国电力, 2005, 38(8): 41-47. Zhou Rongcan, Fan Changxin. Review of material research and material selection for ultra-supercritical power plants[J]. Electric Power, 2005, 38(8): 41-47. [2]蔡文河, 赵卫东, 曹铭珂, 等. 新形势下的金属技术监督[J]. 华北电力技术, 2008(7): 44-46. Cai Wenhe, Zhao Weidong, Cao Mingke, et al. Metal supervision under new circumstances[J]. North China Electric Power, 2008(7): 44-46. [3]Zhang Z, Hu Z, Tu H, et al. Microstructure evolution in HR3C austenitic steel during long-term creep at 650 ℃[J]. Materials Science and Engineering A, 2016, 681: 74-84. [4]方旭东, 韩培德. 太钢超超临界电站锅炉用TP310HCbN无缝管的研制[J]. 钢铁, 2013, 48(7): 58-64. Fang Xudong, Han Peide. Development of TP310HCbN seamless pipe of TISCO for ultra-supercritical power plant boiler[J]. Iron and Steel, 2013, 48(7): 58-64. [5]黄竹平, 胡正飞, 王起江, 等. 国产HR3C耐热钢的蠕变断裂研究[J]. 金属功能材料, 2013, 20(1): 19-22. Huang Zhuping, Hu Zhengfei, Wang Qijiang, et al. Research on creep rupture of domestic HR3C heat resistant steel[J]. Metallic Functional Materials, 2013, 20(1): 19-22. [6]杨华春, 谢逍原, 张 林, 等. 超超临界锅炉用TP310HCbN奥氏体耐热钢管化学成分优化探讨[J]. 发电设备, 2009, 23(2): 122-125. Yang Huachun, Xie Xiaoyuan, Zhang Lin, et al. Chemical composition optimization on TP310HCbN austenitic heat-resistant steel tubes for ultra supercritical power boilers[J]. Power Equipment, 2009, 23(2): 122-125. [7]沈 琦, 刘鸿国, 唐丽英. 超超临界机组新型不锈钢Super304H、HR3C运行5400 h后的性能试验[J]. 电力建设, 2009, 30(9): 62-66. Shen Qi, Liu Hongguo, Tang Liying. Study on operation 5400 h' performance test of ESC unit new stainless steel Super304H and HR3C[J]. Electric Power Construction, 2009, 30(9): 62-66. [8]李太江, 刘福广, 范长信, 等. 超超临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J]. 热加工工艺, 2010, 39(14): 43-46. Li Taijiang, Liu Fuguang, Fan Changxin, et al. Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J]. Hot Working Technology, 2010, 39(14): 43-46. [9]李新梅, 张忠文, 杜宝帅, 等. 600 ℃时效后HR3C钢的显微组织和冲击韧性[J]. 机械工程材料, 2014, 38(7): 95-98. Li Xinmei, Zhang Zhongwen, Du Baoshuai, et al. Microstructure and impact toughness of HR3C steel after aging at 600 ℃[J]. Materials for Mechanical Engineering, 2014, 38(7): 95-98. [10]殷 尊, 蔡 晖, 刘鸿国. 新型耐热钢HR3C在超超临界机组高温服役25 000 h后的性能研究[J]. 中国电机工程学报, 2011, 31(29): 103-109. Yin Zun, Cai Hui, Liu Hongguo. Performance on new heat-resistant steel HR3C in the ultra-supercritical units after service at high temperature for 25 000 hours[J]. Proceedings of the CSEE, 2011, 31(29): 103-109. [11]胡加瑞, 陈金仪, 陈红冬, 等. HR3C钢运行前后组织性能分析[J]. 矿冶工程, 2012, 32(5): 110-112. Hu Jiarui, Chen Jinyi, Chen Hongdong, et al. Study on microstructure and mechanical properties of HR3C before and after operation[J]. Mining and Metallurgical Engineering, 2012, 32(5): 110-112. [12]秦承鹏, 李 梁, 王 亮, 等. 1000 MW超超临界机组末级再热器爆管原因分析[C]//第九届电站金属材料学术年会. 2011: 382-388. [13]刘世刚, 黄桥生, 陈 琨. 1000 MW超超临界机组高温再热器管弯头失效分析[J]. 电力科技与环保, 2017, 33(2): 60-62. Liu Shigang, Huang Qiaosheng, Chen Kun. Failure analysis on the elbow bursting of final stage reheater tube of 1000 MW ultra-supercritical boiler[J]. Electric Power Technology and Environmental Protection, 2017, 33(2): 60-62. [14]李 斌, 徐晓伟, 何淑芬. HR3C薄壁弯管泄露失效分析[J]. 热加工工艺, 2015, 44(6): 241-243. Li Bin, Xu Xiaowei, He Shufen. Analysis on leak failure of HR3C thin-walled elbows[J]. Hot Working Technology, 2015, 44(6): 241-243. [15]于鸿垚, 董建新, 谢锡善. 新型奥氏体耐热钢HR3C的研究进展[J]. 世界钢铁, 2010, 10(2): 42-49, 61. Yu Hongyao, Dong Jianxin, Xie Xishan. Research development of new austenitic heat-resistant steel HR3C[J]. World Iron and Steel, 2010, 10(2): 42-49, 61. [16]郭 岩, 林 琳, 侯淑芳, 等. 国产TP310HCbN钢在高温应力下的组织结构[J]. 中国电力, 2012, 45(10): 42-47. Guo Yan, Lin Lin, Hou Shufang, et al. Microstructure of domestic TP310HCbN steel after high-temperature creep-rupture test[J]. Electric Power, 2012, 45(10): 42-47. [17]Iseda A, Okada H, Semba H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Materials, 2007, 2(4): 199-206. [18]Томснко Ю С, 熊煜东. 试样厚度和缺口半径对冲击韧性及脆性临界温度的影响[J]. 理化检验-物理分册, 1981, 17(4): 62-63. [19]蔡文河, 严苏星. 超(超)临界机组厚壁金属部件脆性断裂敏感性分析[J]. 中国电力, 2009, 42(10): 1-4. Cai Wenhe, Yan Suxing. Brittle fracture sensitivity analysis on thick-walled metal parts of (ultra) super critical unit[J]. Electric Power, 2009, 42(10): 1-4. [20]郑子杰. HR3C钢管时效冲击韧性大幅降低的原因分析[J]. 锅炉技术, 2011, 42(4): 46-48. Zheng Zijie. The analysis of considerably reduction to HR3C's aging impact ductility[J]. Boiler Technology, 2011, 42(4): 46-48. [21]杜宝帅, 魏玉忠, 张忠文, 等. 高温服役4.2万小时超超临界机组用HR3C钢组织与性能[J]. 材料热处理学报, 2014, 35(12): 84-89. Du Baoshuai, Wei Yuzhong, Zhang Zhongwen, et al. Microstructure and properties of HR3C steel used in ultra-supercritical units after 42 000 h exposure to elevated temperature[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 84-89. [22]陈国宏, 潘家栋, 王家庆, 等. 650 ℃时效HR3C耐热钢的显微组织与高温拉伸性能[J]. 材料热处理学报, 2014, 35(2): 104-109. Chen Guohong, Pan Jiadong, Wang Jiaqing, et al. Microstructure and high-temperature tensile properties of HR3C heat-resistant steel after annealing at 650 ℃[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 104-109. [23]刘俊建, 陈国宏, 王家庆, 等. 时效热处理对HR3C钢组织结构及力学性能的影响[J]. 合肥工业大学学报(自然科学版), 2011, 34(1): 47-51.Liu Junjian, Chen Guohong, Wang Jiaqing, et al. Effect of ageing treatment on microstructure and mechanical properties of HR3C steel[J]. Journal of Hefei University of Technology(Natural Science), 2011, 34(1): 47-51. [24]Wang B, Liu Z C, Cheng S C, et al. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature[J]. Journal of Iron and Steel Research (International), 2014, 21(8): 765-773. [25]罗坤杰, 赵彦芬, 张 路, 等. 超超临界锅炉用奥氏体耐热钢HR3C的脆化机理[J]. 材料热处理学报, 2017, 38(7): 79-86. Luo Kunjie, Zhao Yanfen, Zhang Lu, et al. Embrittlement mechanism of austenitic heat resistant steel HR3C for ultra supercritical boiler[J]. Transactions of Materials and Heat Treatment, 2017, 38(7): 79-86. [26]张鸿翔. 析出相行为对XA704和HR3C时效和持久性能影响的研究[D]. 上海: 上海交通大学, 2010. [27]谢锡善, 艾卓群, 迟成宇, 等. 620~650 ℃锅炉过热器/再热器用新型奥氏体耐热钢SP2215的研发[J]. 钢管, 2018, 47(1): 23-29. Xie Xishan, Ai Zhuoqun, Chi Chengyu, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620-650 ℃ boiler super heater/reheater[J]. Steel Pipe, 2018, 47(1): 23-29. |