[1]刘耀中, 刘彦庆, 刘静华. 15MnB钢强韧化新工艺及其机理研究[J]. 西安交通大学学报, 1990, 39(4): 115-121. Liu Yaozhong, Liu Yanqing, Liu Jinghua. Strengthening-toughening process of 15MnB steel and its mechanism[J]. Journal of Xi'an Jiaotong University, 1990, 39(4): 115-121. [2]王世亮. 15MnB钢低碳马氏体的回火转变[J]. 金属热处理, 1978, 3(2): 21-27. [3]盈 亮, 余 洋, 戴明华, 等. 热冲压快速冷却工艺对22MnB5钢组织与性能的影响[J]. 金属热处理, 2015, 40(1): 35-38. Ying Liang, Yu Yang, Dai Minghua, et al. Influence of hot stamping RCP process on microstructure and properties of 22MnB5 steel[J]. Heat Treatment of Metals, 2015, 40(1): 35-38. [4]汪思敏, 栾道成, 王正云, 等. 汽车用22MnB5与26MnB5钢组织性能对比[J]. 金属热处理, 2019, 44(6): 38-42. Wang Simin, Luan Daocheng, Wang Zhengyun, et al. Comparative on microstructure and properties of 22MnB5 and 26MnB5 steel for automobile[J]. Heat Treatment of Metals, 2019, 44(6): 38-42. [5]王吉应, 朱帅帅, 李 琦, 等. 淬火温度对热成型22MnB5马氏体钢组织及性能的影响[J]. 金属热处理, 2018, 43(9): 75-79. Wang Jiying, Zhu Shuaishuai, Li Qi, et al. Effect of quenching temperature on microstructure and properties of thermoformed 22MnB5 martensitic steel[J]. Heat Treatment of Metals, 2018, 43(9): 75-79. [6]Mu Y H, Wang B Y, Zhou J, et al. Influences of hot stamping parameters on mechanical properties and microstructure of 30MnB5 and 22MnB5 quenched in flat die[J]. Journal of Central South University, 2018, 25(4): 736-746. [7]Haslberger P, Turk C, Babinsky K, et al. Boron grain boundary segregation in a heat treatable steel[J]. BHM Berg-und Hüttenmännische Monatshefte, 2015, 160(5): 204-208. [8]程俊业, 赵爱民, 陈银莉, 等. 回火温度对淬火后30MnB5热成形钢组织与性能影响[J]. 北京科技大学学报, 2013, 35(9): 1150-1157. Cheng Junye, Zhao Aimin, Chen Yinli, et al. Effect of tempering temperature on the microstructure and mechanical properties of 30MnB5 hot stamping steel after quenching[J]. Journal of University of Science and Technology Beijing, 2013, 35(9): 1150-1157. [9]王春芳, 李文成, 李继康. 钢中非金属夹杂物及对性能的影响[J]. 物理测试, 2018, 36(4): 25-29. Wang Chunfang, Li Wencheng, Li Jikang. Non-metallic inclusion and its effect on property of steel[J]. Physics Examination and Testing, 2018, 36(4): 25-29. [10]吕建刚, 肖李鹏. 钢中非金属夹杂物及其金相检验[J]. 理化检验(物理分册), 2015, 51(4): 229-233. Lü Jiangang, Xiao Lipeng. Non-metallic inclusions in steel and their metallographic examination[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2015, 51(4): 229-233. [11]李建军, 辛雪倩, 刘 琦, 等. 影响钢中非金属夹杂物的关键因素的研究[J]. 大型铸锻件, 2019(1): 13-14. Li Jianjun, Xin Xueqian, Liu Qi, et al. Research on key factors affecting non-metallic inclusions in steel[J]. Heavy Castings and Forgings, 2019(1): 13-14. [12]冯士超, 潘秀兰, 王艳红, 等. 洁净钢脱氧技术现状及发展[J]. 炼钢, 2011, 27(2): 74-77. Feng Shichao, Pan Xiulan, Wang Yanhong, et al. Status quo and progress of deoxidation technology for clean steel[J]. Steelmaking, 2011, 27(2): 74-77. [13]郑 万, 齐盼盼, 沈 星, 等. 低碳低硫钢中MnS析出行为分析[J]. 武汉科技大学学报, 2016, 39(4): 241-247. Zheng Wan, Qi Panpan, Shen Xing, et al. Precipitation behavior of MnS in low-carbon low-sulfur steel[J]. Journal of Wuhan University of Science and Technology, 2016, 39(4): 241-247. [14]黄 野, 杨晓江, 王 峰, 等. 不同冷却条件下钢中MnS夹杂物析出特性的研究[J]. 工业加热, 2016, 45(1): 18-21. Huang Ye, Yang Xiaojiang, Wang Feng, et al. Study on the precipitation characteristics of MnS inclusions in steel during different cooling conditions[J]. Industrial Heating, 2016, 45(1): 18-21. [15]田钱仁. GCr15轴承钢中TiN夹杂物的析出与演变机制[D]. 鞍山: 辽宁科技大学, 2019. Tian Qianren. Precipitation and evolution mechanism of TiN inclusion in GCr15 bearing steel[D]. Anshan: University of Science and Technology Liaoning, 2019. [16]张旭东, 鲍 俭. 钢中不同氧含量对含S钢的MnS夹杂物影响[J]. 现代冶金, 2019, 47(3): 9-11. [17]段丽飞, 周 海. 钢中非金属夹杂物与金相鉴定分析[J]. 中国金属通报, 2019(4): 236-237. [18]刘艳英. 钢中非金属夹杂物及其金相检验[J]. 冶金与材料, 2018, 38(4): 41-42. [19] 范 炜, 韩新利, 张华佳, 等. GB/T 10561—2005与ASTM E45-2013对钢中非金属夹杂物评定的异同[J]. 焊管, 2016, 39(3): 65-68. Fan Wei, Han Xinli, Zhang Huajia, et al. Similarties and differences for non-metallic inclusions evaluation in steel in GB/T 10561—2005 and ASTM E45-2013[J]. Welded Pipe and Tube, 2016, 39(3): 65-68. |