[1]赵先存, 宋顺为, 杨志勇, 等. 高强度超高强度不锈钢[M]. 北京: 高等教育出版社, 2008. [2]王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12. Wang Xiaohui, Luo Haiwen. Research and application progress in ultra-high strength stainless steel for aircraft landing gear[J]. Journal of Materials Engineering, 2019, 47(9): 1-12. [3]刘振宝, 杨志勇, 雍歧龙, 等. 1900 MPa级超高强度不锈钢的研制[J]. 机械工程材料, 2008, 32(3): 48-51. Liu Zhenbao, Yang Zhiyong, Yong Qilong, et al. A 1900 MPa grade ultra-high strength stainless steel[J]. Materials for Mechanical Engineering, 2008, 32(3): 48-51. [4]王晓辉. USS122超高强度不锈钢热变形行为与强韧化机理的研究[D]. 昆明: 昆明理工大学, 2015. Wang Xiaohui. Hot deformation behavior and strengthening and toughening mechanism of USS122G ultra-high strength stainless steel[D]. Kunming: Kunming University of Science and Technology, 2015. [5]马森林, 吕景林. 齿轮锻坯等温正火预处理工艺方法探讨[J]. 热处理, 2003, 18(4): 46-49. Ma Senlin, Lü Jinglin. Exploring on pretreatment process of isothermal normalizing for forged gear stock[J]. Heat Treatment, 2003, 18(4): 46-49. [6]李荫现, 左 彪, 李卫民, 等. 22CrMoH钢齿轮锻件等温正火工艺改进[J]. 热加工工艺, 2019, 48(6): 242-244. Li Yinxian, Zuo Biao, Li Weimin, et al. Improvement of isothermal normalizing process for 22CrMoH steel gear forgings[J]. Hot Working Technology, 2019, 48(6): 242-244. [7]Li Z X, Li C S, Zhang J, et al. Microstructure of hot rolled 1.0C-1.5Cr bearing steel and subsequent spheroidization annealing[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3607-3621. [8]周金华, 陈迦杉, 申勇峰. 正火温度对GCr15轴承钢碳化物溶解扩散和冲击性能的影响[J]. 金属热处理, 2019, 44(3): 100-103. Zhou Jinhua, Chen Jiashan, Shen Yongfeng. Effect of normalizing temperature on carbide solution-diffusion and impact properties of GCr15 bearing steel[J]. Heat Treatment of Metals, 2019, 44(3): 100-103. [9]刘宗昌, 李文学, 高占勇, 等. 钢的退火软化机理[J]. 包头钢铁学院学报, 1998(3): 14-17. Liu Zongchang, Li Wenxue, Gao Zhanyong, et al. Mechanism of annealing softening of the steels[J]. Journal of Baotou University of Iron and Steel Technolog, 1998(3): 14-17. [10]Prawoto Y, Jasmawati N, Sumeru K. Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel[J]. Journal of Materials Science and Technology, 2012, 28(5): 461-466. [11]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3-4): 187-194. [12]潘晓刚, 唐 荻, 宋 勇, 等. DP590级双相钢奥氏体晶粒长大模型[J]. 北京科技大学学报, 2013, 35(2): 189-194. Pan Xiaogang, Tang Di, Song Yong, et al. Austenite grain growth model of DP590 dual-phase steel[J]. Journal of University of Science and Technology Beijing, 2013, 35(2): 189-194. [13]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2013. [14]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [15]张 可, 赵时雨, 隋凤利, 等. 终轧温度对Ti-V-Mo复合微合金钢组织演变和硬度的影响[J]. 材料研究学报, 2019, 33(3): 191-198. Zhang Ke, Zhao Shiyu, Sui Fengli, et al. Effect of finish rolling temperature on microstructure evolution and hardness of Ti-V-Mo complex microalloyed steel[J]. Chinese Journal of Materials Research, 2019, 33(3): 191-198. [16]朱来斌. 固溶温度对一种超高强度不锈钢显微组织和力学性能的影响[J]. 金属功能材料, 2016, 23(3): 54-58. Zhu Laibin. Effect of solution treating temperature on the microstructure and mechanical properties of a ultra-high strength stainless steel[J]. Metallic Functional Materials, 2016, 23(3): 54-58. [17]Pan Tao, Chai Xiyang, Wang Jinguang, et al. Precipitation behavior of V-N microalloyed steels during normalizing[J]. Journal of Iron and Steel Research International, 2015, 22(11): 1037-1042. [18]徐祖耀. 条状马氏体形态对钢力学性质的影响[J]. 热处理, 2009, 24(3): 1-6. Xu Zuyao. Effect of lath martensite morphology on the mechanical properties of steel[J]. Heat Treatment, 2009, 24(3): 1-6. [19]Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ International, 2005, 45(1): 91-94. |