[1]陈志强. 高氮不锈钢研究的发展近况[J]. 宝钢技术, 2005(5): 11-14, 17. Chen Zhiqiang. Recent development in high nitrogen stainless steel research[J]. Baosteel Technology, 2005(5): 11-14, 17. [2]王智勇. 热处理工艺对G30钢组织和性能的影响[J]. 材料热处理学报, 2018, 39(7): 92-98. Wang Zhiyong. Effect of heat treatment on microstructure and properties of G30 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(7): 92-98. [3]郑善举, 杨卯生, 张启富, 等. 氮元素对马氏体不锈钢组织和性能的影响[J]. 材料热处理学报, 2017, 38(1): 100-105. Zheng Shanju, Yang Maosheng, Zhang Qifu, et al. Effect of nitrogen element on microstructure and properties of martensitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 100-105. [4]孙 通, 余建波, 李传军, 等. 回火工艺对含氮不锈钢30Cr15MoVN组织和性能的影响[J]. 上海金属, 2015, 37(4): 30-33. Sun Tong, Yu Jianbo, Li Chuanjun, et al. Effect of tempering temperature on microstructure and properties of n containing stainless steel 30Cr15MoVN[J]. Shanghai Metals, 2015, 37(4): 30-33. [5]俞 峰, 巍果能, 许 达. 不锈轴承材料的研究和发展[J]. 钢铁研究学报, 2005, 17(1): 6-9. Yu Feng, Wei Guoneng, Xu Da. Research and development of stainless bearing material[J]. Journal of Iron and Steel Research, 2005, 17(1): 6-9. [6]Yang H B, Wang Y M, Luo L, et al. Ostwald growth of carbides in cyclic annealing process of GCr15 bearing steel[J]. Advanced Materials Research, 2011, 374-377: 1805-1808. [7]Long X Y, Zhang F C, Kang J, et al. Study on carbide-bearing and carbide-free bainitic steels and their wear resistance[J]. Materials Science and Technology, 2016, 33(5): 615-622. [8]Ping L Y, Peng Q H, Tao C H, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J]. Journal of Iron and Steel Research, 2015, 22(2): 91-98. [9]张 敏, 杨卯生. 高氮不锈轴承钢中的碳氮化物对力学性能的影响[J]. 钢铁研究学报, 2012, 24(5): 18-23. Zhang Min, Yang Maosheng. Effect of the carbon nitrogen compounds on the mechanical properties of high nitrogen stainless bearing steel[J]. Journal of Iron and Steel Research, 2012, 24(5): 18-23. [10]徐海峰, 曹文全, 俞 峰, 等. 国内外高氮马氏体不锈轴承钢研究现状与发展[J]. 钢铁, 2017, 52(1): 53-63. Xu Haifeng, Cao Wenquan, Yu Feng, et al. Current research status and development of domestic and foreign high nitrogen martensitic stainless bearing steel[J]. Iron & Steel, 2017, 52(1): 53-63. [11]杨顺贞, 唐建永, 吕均益, 等. 回火温度对1Cr13不锈钢组织与力学性能的影响[J]. 热加工工艺, 2012, 41(12): 181-183, 186. Yang Shunzhen, Tang Jianyong, Lü Junyi, et al. Effect of tempering temperature on microstructure and mechanical properties of 1Cr13 stainless steel[J]. Hot Working Technology, 2012, 41(12): 181-183, 186. [12]刘小萍, 田文怀, 杨 峰, 等. 时效处理SUS316L不锈钢中析出相的晶体结构和化学成分[J]. 材料热处理学报, 2006, 27(3): 81-85. Liu Xiaoping, Tian Wenhuai, Yang Feng, et al. Crystal structure and chemical composition of precipitates in an aged SUS316L stainless steel[J]. Transactions of Materials and Heat Treatment, 2006, 27(3): 81-85. [13]Ali M, Porter D, Kömi J, et al. The effect of double austenitization and quenching on the microstructure and mechanical properties of CrNiMoWMnV ultrahigh-strength steels after low-temperature tempering[J]. Materials Science and Engineering A, 2019, 763: 1-10. [14]Wang Yongjin, Song Renbo, Li Yaping. Microstructural evolution and mechanical properties of 9Cr18 steel after thixoforging and heat treatment[J]. Materials Characterization A, 2017, 127: 64-72. [15]李昭坤, 罗志强, 李建新, 等. 高氮马氏体不锈轴承钢的组织与性能[J]. 金属热处理, 2018, 43(5): 15-21. Li Zhaokun, Luo Zhiqiang, Li Jianxin, et al. Microstructure and mechanical properties of high nitrogen martensite stainless bearing steel[J]. Heat Treatment of Metals, 2018, 43(5): 15-21. [16]Díaz-Fuentes M, Gutiérrez I. Analysis of different acicular ferrite microstructures generated in a medium-carbon molybdenum steel[J]. Materials Science and Engineering A, 2003, 363(1/2): 316-324. [17]李 峰, 张鑫龙. 基于流体压力作用下的不锈钢棒单向拉伸断口形貌分析[J]. 哈尔滨理工大学学报, 2013, 18(2): 16-20. Li Feng, Zhang Xinlong. Fractography in the uniaxial tension process of stainless steel bars under the fluid pressure[J]. Journal of Harbin University of Science and Technology, 2013, 18(2): 16-20. [18]Zhang X, Zhou Q, Wang K, et al. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing[J]. Materials and Design, 2019, 166: 1-15. |