[1] 张银花, 周清跃, 鲍磊, 等. 国内外高速铁路钢轨性能对比研究[J]. 中国铁道科学, 2015, 36(4): 20-26. Zhang Yinhua, Zhou Qingyue, Bao Lei, et al.Comparative study on rail performance of high speed railway home and abroad[J]. China Railway Science, 2015, 36(4): 20-26. [2] 董华利. U71Mn、U75V和U78CrV钢轨在线热处理后性能改善比较[J]. 金属热处理, 2016, 41(8): 133-137. Dong Huali.Comparison of property improvement of U71Mn, U75V and U78crv rail steels by online heat treatment[J]. Heat Treatment of Metals, 2016, 41(8): 133-137. [3] 李闯. U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43(1): 152-156. Li Chuang.Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43(1): 152-156. [4] 刘懿乐, 董华利, 易军, 等. 在线连续冷却对U75V钢轨组织和性能的影响[J]. 金属热处理, 2017, 42(1): 84-86. Liu Yile, Dong Huali, Yi Jun, et al.Influence of online continuous cooling on microstructure and properties of U75V rail steel[J]. Heat Treatment of Metals, 2017, 42(1): 84-86. [5] 李波, 朱国明, 陶功明, 等. 在线余热淬火对U75V钢轨组织性能的影响[J]. 钢铁, 2014, 49(7): 101-106, 121. Li Bo, Zhu Guoming, Tao Gongming, et al.Effect of online stacking quench on microstructure and properties of U75V rail[J]. Steel and Iron, 2014, 49(7): 101-106, 121. [6] 黄进科, 赵刚, 刘占龙. U75V 60 kg/m重轨在线余热淬火温度场的数值模拟[J]. 上海金属, 2016, 38(5): 73-78. Huang Jinke, Zhao Gang, Liu Zhanlong.Numerical simulation of U75V 60 kg/m heavy rail temperature field during online stacking quench[J]. Shanghai Metals, 2016, 38(5): 73-78. [7] 王晓丽, 宋波, 焦国利. 轧制变形对U75V重轨钢珠光体片层间距的影响[J]. 特殊钢, 2008, 29(6): 52-54. Wang Xiaoli, Song Bo, Jiao Guoli.Influence of rolling deformation on interlamellar spacing of pearlite in U75V heavy rail steel[J]. Special Steel, 2008, 29(6): 52-54. [8] 宋华, 高明昕, 贾昊, 等. U75V重轨冷却过程的相变变形[J]. 塑性工程学报, 2011, 18(3): 95-100. Song Hua, Gao Mingxin, Jia Hao, et al.Study on the phase change deformation of U75V heavy rail during the cooling process[J]. Journal of Plastic Engineering, 2011, 18(3): 95-100. [9] 张建国, 敬雄刚. U75V钢轨TTT曲线、CCT曲线及感应热处理的显微组织分析[J]. 热加工工艺, 2010, 39(8): 168-170, 113. Zhang Jianguo, Jing Xionggang.TTT&CCT curve and microstructure analysis of U75V rail after induction heat treatment[J]. Hot Working Technology, 2010, 39(8): 168-170, 113. [10] 陈林, 郭飞翔, 王慧军, 等. 微观组织对U20Mn贝氏体钢疲劳裂纹扩展行为的影响[J]. 材料热处理学报, 2018, 39(2): 119-124. Chen Lin, Guo Feixiang, Wang Huijun, et al.Effect of microstructure on fatigue crack propagation behavior of U20Mn bainitic steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(2): 119-124. [11] 陈林, 王慧军, 郭飞翔. 淬火微观组织对重轨钢疲劳裂纹扩展速率的影响[J]. 材料导报, 2017, 31(14): 109-112. Chen Lin, Wang Huijun, Guo FeiXiang. Effect of quenching microstructure on fatigue crack growth rate of heavy rail steel[J]. Materials Review, 2017, 31(14): 109-112. [12] 王慧军, 陈林, 郭飞翔, 等. 残余应力对U75V重轨钢疲劳裂纹扩展速率的影响[J]. 金属热处理, 2017, 42(6): 23-27. Wang Huijun, Chen Lin, Guo Feixiang, et al.Effect of residual stress on fatigue crack propagation rate of U75V heavy rail steel[J]. Heat Treatment of Metals, 2017, 42(6): 23-27. |