[1]乐庸志, 钱国钢. GCr15钢旋压轧辊表面失效原因分析[J]. 理化检验(物理分册), 2011, 47(8): 531-533. Yue Yongzhi, Qian Guogang. Surface failure reason analysis on GCr15 steel spinning rollers[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2011, 47(8): 531-533. [2]Sexton L, Lavin S, Byrne G, et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology, 2002, 122(1): 63-68. [3]Wang Xinlin, Deng Dewei, Qi Meng, et al. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication[J]. Optics and Laser Technology, 2016, 80: 138-144. [4]Wu Zupeng, Li Tao, Li Qi, et al. Process optimization of laser cladding Ni60A alloy coating in remanufacturing[J]. Optics and Laser Technology, 2019, 120: 105718. [5]杨胶溪, 胡 星, 王艳芳. TC轴承激光增材制造工艺及组织性能研究[J]. 材料工程, 2016, 44(7): 61-66. Yang Jiaoxi, Hu Xing, Wang Yanfang. Microstructure and properties of laser additive manufacturing TC bearing[J]. Journal of Materials Engineering, 2016, 44(7): 61-66. [6]Cao Yabin, Zhi Shixin, Qi Haibo, et al. Evolution behavior of ex-situ NbC and properties of Fe-based laser clad coating[J]. Optics and Laser Technology, 2020, 124: 105999. [7]李 杰, 曾克里, 高 峰. Cr3C2-25NiCr对铁基激光熔覆层微观组织与性能的影响[J]. 热喷涂技术, 2012, 4(1): 36-40. Li Jie, Zeng Keli, Gao Feng. The effects of Cr3C2-25NiCr on microstructure and properties of iron-based laser clad layer[J]. Thermal Spray Technology, 2012, 4(1): 36-40. [8]Abhijit Sadhu, Amit Choudhary, Sagar Sarkar, et al. A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60%WC ceramic coating on Inconel 718[J]. Surface and Coatings Technology, 2020, 389: 125646. [9]陆海峰, 潘晨阳, 覃恩伟, 等. 45钢表面激光熔覆WC/Ni基合金复合覆层的组织和性能[J]. 金属热处理, 2019, 44(12): 19-25. Lu Haifeng, Pan Chenyang, Qin Enwei, et al. Microstructure and properties of laser clad WC/Ni-based alloy composite coating on 45 steel surface[J]. Heat Treatment of Metals, 2019, 44(12): 19-25. [10]何力佳, 王文峰, 王 函, 等. Cr3C2对Cr12钢光纤激光铁基熔覆层组织与硬度的影响[J]. 热加工工艺, 2018, 47(20): 129-135. He Lijia, Wang Wenfeng, Wang Han, et al. Effects of Cr3C2 on microstructure and microhardness of iron-based cladding layer by fiber laser on Cr12 steel[J]. Hot Working Technology, 2018, 47(20): 129-135. [11]武晓雷, 陈光南. 铁基合金激光熔覆组织及高温时效转变的TEM研究[J]. 金属热处理学报, 1999, 20(1): 3-5. Wu Xiaolei, Chen Guangnan. Microstructure characterization and evolution of laser cladding Fe-Cr-C-W-Ni alloys[J]. Transactions of Metal Heat Treatment, 1999, 20(1): 3-5. [12]李志远, 赵伟毅, 张剑波, 等. Cr3C2对Fe基合金激光熔覆层组织与性能的影响[J]. 激光技术, 2010, 34(5): 591-595. Li Zhiyuan, Zhao Weiyi, Zhang Jianbo, et al. Effect of Cr3C2 on microstructure and properties of Fe-based alloy coating by laser cladding[J]. Laser Technology, 2010, 34(5): 591-595. [13]张净宜, 邱长军, 贺沅玮, 等. 不同Ni含量铁基激光熔覆层组织和性能的研究[J]. 表面技术, 2017, 46(6): 221-225. Zhang Jingyi, Qiu Changjun, He Yuanwei, et al. Microstructure and properties of Fe-based laser cladding with different Ni content[J]. Surface Technology, 2017, 46(6): 221-225. [14]Li Ruifeng, Li Zhuguo, Huang Jian, et al. Effect of Ni-to-Fe ratio on structure and properties of Ni-Fe-B-Si-Nb coatings fabricated by laser processing[J]. Applied Surface Science, 2011, 257(8): 3554-3557. [15]张 伟, 冯秋红, 王尔亦, 等. 激光熔覆原位生成VC增强Fe-Ni基复合涂层的组织与硬度[J]. 金属热处理, 2019, 44(7): 190-193. Zhang Wei, Feng Qiuhong, Wang Eryi, et al. Microstructure and hardness of in-situ synthesized VC-reinforced Fe-Ni-based composite coating by laser cladding[J]. Heat Treatment of Metals, 2019, 44(7): 190-193. [16]Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions[J]. Applied Surface Science, 2001, 180(1/2): 102-118. |