[1]Huang B, Zhang C, Zhang G, et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review[J]. Surface and Coatings Technology, 2019, 377: 124896. [2]吴 静. 涂层缺陷对铁基非晶合金涂层腐蚀行为影响研究[D]. 合肥: 中国科学技术大学, 2020. Wu Jing. Role of coating defects in corrosion behavior of Fe-based amorphous metallic coating[D]. Hefei: University of Science and Technology of China, 2020. [3]李 刚, 贾孟东, 况 军, 等. 激光熔覆Ni60Zr20Nb15Al5非晶合金涂层组织及性能研究[J]. 腐蚀科学与防护技术, 2011(1): 9-12. Li Gang, Jia Mengdong, Kuang Jun, et al. Microstructure and performance of laser clad Ni60Zr20Nb15Al5 amorphous alloy coating[J]. Corrosion Science and Protection Technology, 2011(1): 9-12. [4]蔡保贤. 锆基非晶纳米晶涂层制备及性能研究[D]. 南京: 南京航空航天大学, 2018. Cai Baoxian. Preparation, corrosion and wear properties of Zr-based amorphous and nanocrystalline coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. [5]Li C, Chen W, Jiang Q, et al. Corrosion resistance of Ti-based metallic glass coating in concentrated nitric acid[J]. Materials Chemistry and Physics, 2014, 143(3): 900-903. [6]Guo W M, Wu Y P, Zhang J F, et al. Fabrication and characterization of thermal-sprayed Fe-based amorphous/nanocrystalline composite coatings: An overview[J]. Journal of Thermal Spray Technology, 2014, 23(7): 1157-1180. [7]Li Y J, Liang T Q, Ao R, et al. Oxidation resistance of iron-based coatings by supersonic arc spraying at high temperature[J]. Surface and Coatings Technology, 2018, 347: 99-112. [8]Cheng J B, Wang Z H, Xu B S. Wear and corrosion behaviors of FeCrBSiNbW amorphous/nanocrystalline coating prepared by arc spraying process[J]. Journal of Thermal Spray Technology, 2012, 21(5): 1025-1031. [9]周 正, 王佳音, 贺定勇, 等. FeCrBSiC电弧喷涂层磨损及热腐蚀性能研究[J]. 热喷涂技术, 2013, 5(4): 6-11. Zhou Zheng, Wang Jiayin, He Dingyong, et al. Wear and hot corrosion resistance of FeCrBSiC coating prepared by wire-arc spraying[J]. Thermal Spray Technology, 2013, 5(4): 6-11. [10]赵仁亮, 冯立明, 刘海涛, 等. 镍元素添加对铁基非晶涂层结构及性能影响[J]. 冶金与材料, 2019, 39(3): 155-156. Zhao Renliang, Feng Liming, Liu Haitao, et al. The effect of nickel addition on the structure and properties of iron-based amorphous coatings[J]. Metallurgy and Materials, 2019, 39(3): 155-156. [11]Zhang H, Hu Y, Hou G L, et al. The effect of high-velocity oxy-fuel spraying parameters on microstructure, corrosion and wear resistance of Fe-based metallic glass coatings[J]. Journal of Non-Crystalline Solids, 2014, 406: 37-44. [12]王 刚, 陈 静, 黄仲佳, 等. 喷涂距离对热喷涂非晶合金涂层组织和腐蚀性能的影响[J]. 功能材料, 2016, 47(6): 6185-6189. Wang Gang, Chen Jing, Huang Zhongjia, et al. Influence of spraying distance on microstructure and corrosion behavior of amorphous alloy coatings[J]. Journal of Functional Materials, 2016, 47(6): 6185-6189. [13]Wang S L, Zhang Z Y, Gong Y B, et al. Microstructures and corrosion resistance of Fe-based amorphous/nanocrystalline coating fabricated by laser cladding[J]. Journal of Alloys and Compounds, 2017, 728: 1116-1123. [14]Cai B X, Yang L. Enhanced corrosion and wear resistances of Zr-based alloy induced by amorphous/nanocrystalline coating[J]. Journal of Wuhan University of Technology (Materials Science), 2019, 34(4): 791-797. [15]Zhang C, Guo R Q, Yang Y, et al. Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating[J]. Electrochimica Acta, 2011, 56(18): 6380-6388. [16]刘 敏, 樊自拴. 电弧喷涂制备Fe65Cr20Mo7B3.5SiMn1.5W3涂层[J]. 中国表面工程, 2012, 25(1): 60-64. Liu Min, Fan Zishuan. Fe65Cr20Mo7B3.5SiMn1.5W3 coatings prepared by arc spraying[J]. China Surface Engineering, 2012, 25(1): 60-64. [17]Lin J R, Wang Z H, Cheng J B, et al. Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution[J]. Results in Physics, 2019, 12: 597-602. [18]郭胜锋, 赖利民, 丁凯露, 等. 镁合金表面非晶涂层的构筑及其腐蚀行为[J]. 表面技术, 2019, 48(3): 40-46. Guo Shengfeng, Lai Limin, Ding Kailu, et al. Construction and corrosion behaviour of amorphous coating on magnesium alloy[J]. Surface Technology, 2019, 48(3): 40-46. [19]朱美玲, 王建利, 裴 娟, 等. MgZnCa合金的非晶形成能力及其在模拟体液中的腐蚀性能[J]. 材料热处理学报, 2019, 40(2): 32-39. Zhu Meiling, Wang Jianli, Pei Juan, et al. Glass forming ability of MgZnCa alloys and its corrosion resistance in simulated body fluids[J]. Transactions of Materials and Heat Treatment, 2019, 40(2): 32-39. [20]Guilemany J M, Dosta S, Miguel J R. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders[J]. Surface and Coatings Technology, 2006, 201(3): 1180-1190. [21]Sanchette F, Billard A. Main features of magnetron sputtered aluminium-transition metal alloy coatings[J]. Surface and Coatings Technology, 2001, 142: 218-224. [22]罗婵媛, 纪秀林, 李 泽. 电沉积非晶态Fe-Co-Ni-P镀层的制备及性能[J]. 中国表面工程, 2017, 30(2): 92-97. Luo Chanyuan, Ji Xiulin, Li Ze. Preparation and properties of electrodeposited amorphous Fe-Co-Ni-P coatings[J]. China Surface Engineering, 2017, 30(2): 92-97. [23]Bakare M S, Voisey K T, Chokethawai K, et al. Corrosion behaviour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10[J]. Journal of Alloys and Compounds, 2012, 527(3): 210-218. [24]Ye W, Li Y, Wang F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel[J]. Electrochimica Acta, 2005, 51(21): 4426-4432. |