[1]张亚琦, 赵 刚, 鲍思前, 等. SKS51脱碳分析及其对淬硬性的影响[J]. 热加工工艺, 2012, 41(8): 189-191. Zhang Yaqi, Zhao Gang, Bao Siqian, et al. Analysis on decarburization of SKS51 and effect on hardenability[J]. Hot Working Technology, 2012, 41(8): 189-191. [2]杜小兵. 退火工艺对M2 高速钢钢板脱碳的影响研究[J]. 特钢技术, 2016, 22(2): 37-40. Du Xiaobing. Study about the effect of annealing process on decarburization of M2 high speed steel plate[J]. Special Steel Technology, 2016, 22(2): 37-40. [3]石楠楠, 吴晓春, 周青春. 表面脱碳层对H13钢热疲劳性能的影响[J]. 上海金属, 2011(1): 26-29. Shi Nannan, Wu Xiaochun, Zhou Qingchun. Effect of surface decarburization layer on thermal fatigue behavior of steel H13[J]. Shanghai Metals, 2011(1): 26-29. [4]丛 洁, 吴 鹏. 54SiCr6弹簧失效分析[J]. 物理测试, 2015, 33(5): 48-50. Cong Jie, Wu Peng. Failure analysis of 54SiCr6 spring[J]. Physics Examination and Testing, 2015, 33(5): 48-50. [5]韩 晶, 王立辉, 李 辉. 击针断裂分析[J]. 物理测试, 2014, 32(1): 43-45. Han Jing, Wang Lihui, Li Hui. Fracture analysis of firing pin[J]. Physics Examination and Testing, 2014, 32(1): 43-45. [6]张家文, 付天亮, 吴 昊, 等. 40CrNiMo7钢锻轴淬火开裂的原因分析[J]. 金属热处理, 2021, 46(2): 213-218. Zhang Jiawen, Fu Tianliang, Wu Hao, et al. Cause analysis on quenching cracking of 40CrNiMo7 steel forged shaft[J]. Heat Treatment of Metals, 2021, 46(2): 213-218. [7]GB/T 224—2019, 钢的脱碳层深度测定法[S]. [8]李 慧, 邢建伟, 张敬彤, 等. 几种常用的脱碳层深度测定方法[J]. 理化检验-物理分册, 2015, 51(1): 37-39. Li Hui, Xing Jianwei, Zhang Jingtong, et al. Several common methods for measuring the depth of decarburization[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2015, 51(1): 37-39. [9]陈晓泉. 《钢的脱碳层深度测定法》标准浅析[J]. 物理测试, 2013, 31(5): 51-56. Chen Xiaoquan. Analysis on standard of decarburized depth in steel[J]. Physics Examination and Testing, 2013, 31(5): 51-56. [10]柳洋波, 张 玮, 佟 倩, 等. 2%残氧气氛下化学成分对高碳钢脱碳层深度的影响[J]. 金属热处理, 2017, 42(9): 143-148. Liu Yangbo, Zhang Wei, Tong Qian, et al. Effects of chemical composition on decarburization layer depth of high carbon steels in 2% oxygen atmosphere[J]. Heat Treatment of Metals, 2017, 42(9): 143-148. [11]范红妹, 常树林, 赵海峰, 等. APQP方法在汽车用热成型钢产品开发中的应用[J]. 中国金属通报, 2018(10): 126-127. Fan Hongmei, Chang Shulin, Zhao Haifeng, et al. Application of APQP method on the development of hot forming steels for automobile[J]. China Metal Bulletin, 2018(10): 126-127. [12]宋勇军, 王晓南, 徐兆国, 等. 700 MPa级超高强重载汽车车厢板的研制[J]. 机械工程学报, 2011, 47(22): 69-73. Song Yongjun, Wang Xiaonan, Xu Zhaoguo, et al. Development of 700 MPa grade ultra-high strength heavy duty automobile carriage strip[J]. Journal of Mechanical Engineering, 2011, 47(22): 69-73. [13]刘 丹, 初国军, 李嘉玲, 等. 75Crl锯片用钢的开发[J]. 河北冶金, 2013(7): 9. Liu Dan, Chu Guojun, Li Jialing, et al. Development of 75Cr1 saw blade steel[J]. Hebei Metallurgy, 2013(7): 9. [14]甘晓龙, 王 成, 郑海涛, 等. 75Cr1合金工具钢在冷轧和球化退火过程中的组织演变[J]. 金属热处理, 2018, 43(9): 59-63. Gan Xiaolong, Wang Cheng, Zheng Haitao, et al. Microstructure evolution of alloy tool steel 75Cr1 during cold rolling and spheroidizing annealing process[J]. Heat Treatment of Metals, 2018, 43(9): 59-63. [15]丁礼权, 吴 润, 罗国华, 等. 20CrMnTi齿轮钢淬透性试验研究[J]. 武钢技术, 2016, 54(3): 26-28. Ding Liquan, Wu Run, Luo Guohua, et al. Research on hardenability of 20CrMnTi gear steel[J]. Wisco Technology, 2016, 54(3): 26-28. [16]杨金艳, 赵灵杰, 成亚维. 20CrMnTi钢渗碳齿轮表面裂纹形成原因[J]. 金属热处理, 2019, 44(6): 215-219. Yang Jinyan, Zhao Lingjie, Cheng Yawei. Causes of surface cracks in carburized gear of 20CrMnTi steel[J]. Heat Treatment of Metals, 2019, 44(6): 215-219. [17]柳洋波, 崔京玉, 佟 倩, 等. Nb含量对20CrMnTi钢淬透性的影响[J]. 金属热处理, 2014, 39(5): 47-50. Liu Yangbo, Cui Jingyu, Tong Qian, et al. Effect of Nb content on hardenability of 20CrMnTi steel[J]. Heat Treatment of Metals, 2014, 39(5): 47-50. [18]严春莲, 贾惠平, 鞠新华, 等. 75Cr1钢中脱碳层深度测定方法的探讨[J]. 物理测试, 2017, 35(2): 35-38. Yan Chunlian, Jia Huiping, Ju Xinhua, et al. Discussion of determination methods for the decarburization layer depth of 75Cr1 steel[J]. Physics Examination and Testing, 2017, 35(2): 35-38. |