金属热处理 ›› 2021, Vol. 46 ›› Issue (6): 135-145.DOI: 10.13251/j.issn.0254-6051.2021.06.029
权晨, 刘新宝, 朱麟, 李博, 王妮
收稿日期:
2021-01-03
出版日期:
2021-06-25
发布日期:
2021-07-21
通讯作者:
刘新宝,教授,博士生导师,E-mail:xbliu2011@163.com
作者简介:
权 晨(1996—),女,硕士研究生,主要研究方向为金属高温蠕变微观组织分析和寿命预测,E-mail:18592026584@163.com。
基金资助:
Quan Chen, Liu Xinbao, Zhu Lin, Li Bo, Wang Ni
Received:
2021-01-03
Online:
2021-06-25
Published:
2021-07-21
摘要: 结合国内外对高铬耐热钢的最新研究成果,从强化机制出发,总结分析了高铬耐热钢在蠕变过程中微观组织的演化行为。长时蠕变过程中由于M23C6碳化物和Laves相的粗化,高铬耐热钢性能下降,通过调整元素含量及改进热处理工艺可提高高温组织的稳定性。Z相的形成与MX相的消耗密切相关,目前对于Z相的成核机理尚不能达成一致,因此生成足够量的MX碳氮化物并保持高温长时作用下组织的稳定性是提高高铬耐热钢高温性能的有效途径。
中图分类号:
权晨, 刘新宝, 朱麟, 李博, 王妮. 高铬耐热钢蠕变过程中的组织演化行为[J]. 金属热处理, 2021, 46(6): 135-145.
Quan Chen, Liu Xinbao, Zhu Lin, Li Bo, Wang Ni. Microstructure evolution behavior of high chromium heat-resistant steel during creep[J]. Heat Treatment of Metals, 2021, 46(6): 135-145.
[1]吴 凡. 超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景[J]. 电力系统装备, 2019(24): 148-149. Wu Fan. Development status and research prospect of ferritic heat-resistant steel for boiler tubes in ultra-high critical pressure power plants[J]. Electric Power System Equipment, 2019(24): 148-149. [2]熊林敞, 田仲良. 超超临界汽轮机转子用耐热钢研究进展[J]. 上海金属, 2018, 40(1): 89-94. Xiong Linchang, Tian Zhongliang. Development of heat-resistant steels used for ultra-supercritical steam turbine rotor[J]. Shanghai Metals, 2018, 40(1): 89-94. [3]姬慧君, 丁 凯, 赵炳戈, 等. 改进型9Cr耐热钢高温长时时效组织演变研究[J]. 上海金属, 2018, 40(6): 34-38. Ji Huijun, Ding Kai, Zhao Bingge, et al. Investigation on the microstructure evolution of modified 9Cr heat-resistant steel after long-time aging at high temperature[J]. Shanghai Metals, 2018, 40(6): 34-38. [4]Verma A K, Hawk J A, Romanov V N, et al. Predictions of long-term creep life for the family of 9-12wt% Cr martensitic steels[J]. Journal of Alloys and Compounds, 2020, 815: 152417. [5]刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical (A-USC)fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [6]胡正飞, 杨振国. 高铬耐热钢的发展及其应用[J]. 钢铁研究学报, 2003, 15(3): 60-65. Hu Zhengfei, Yang Zhenguo. Development and application of high chromium heat-resistant steel[J]. Journal of Iron and Steel Research, 2003, 15(3): 60-65. [7]Xiao B, Xu L, Cayron C, et al. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel[J]. Acta Materialia, 2020, 195(15): 199-208. [8]吕振家, 彭建强, 周立艳, 等. 汽轮机转子用9-12%Cr钢发展情况综述[J]. 大型铸锻件, 2019(2): 1-5. Lü Zhenjia, Peng Jianqiang, Zhou Liyan, et al. Development status summarization of 9-12% Cr steel used for steam turbine rotor[J]. Heavy Castings and Forgings, 2019(2): 1-5. [9]吴增强, 白 银, 马龙腾, 等. 650 ℃马氏体耐热钢研究及其进展[J]. 钢铁, 2015, 50(5): 1-6. Wu Zengqiang, Bai Yin, Ma Longteng, et al. Research and development of martensitic creep-resistant steels for 650 ℃[J]. Iron and Steel, 2015, 50(5): 1-6. [10]冯卫国. 700 ℃火电超超临界机组及阀门发展概况[J]. 化肥设计, 2019, 57(5): 5-9. Feng Weiguo. Development overview of 700 ℃ ultra-supercritical thermal power units and valves[J]. Chemical Fertilizer Design, 2019, 57(5): 5-9. [11]Swindeman R W, Santella M L, Maziasz P J, et al. Issues in replacing Cr-Mo steels and stainless steels with 9Cr-1Mo-V steel[J]. International Journal of Pressure Vessels & Piping, 2004, 81(6): 507-512. [12]Wang Y, Mayer K H, Scholz A, et al. Development of new 11%Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperatures up to 650 ℃[J]. Materials Science and Engineering: A, 2009, 510-511: 180-184. [13]朱 麟. 高铬耐热钢高温蠕变行为及寿命预测[D]. 西安: 西北大学, 2019. Zhu Lin. Creepbehavior and life prediction of high chromium heat resistant steel at elevated temperature[D]. Xi'an: Northwest University, 2019. [14]Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments[J]. Journal of Alloys and Compounds, 2018, 743(30): 332-364. [15]Smith A, Asadikiya M, Chen J, et al. The compositional optimization and secondary phases evaluation regarding the creep resistance in Grade 91 steel through the CALPHAD approach[J]. Computational Materials Science, 2020, 177: 109519. [16]Cipolla L, Danielsen H K, Venditti D, et al. Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel[J]. Acta Materialia, 2010, 58(2): 669-679. [17]Xu Yuantao, Zhang Xiying, Tian Yubo, et al. Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111: 122-127. [18]Onizawa T, Wakai T, Ando M, et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J]. Nuclear Engineering and Design, 2008, 238(2): 408-416. [19]殷凤仕, 刘志良, 薛 冰, 等. 微量碳和氮对9%Cr耐热钢中第二相析出行为的影响[J]. 动力工程学报, 2010, 30(4): 258-262. Yin Fengshi, Liu Zhiliang, Xue Bing, et al. Effect of trace amounts of carbon and nitrogen on second phase precipitation of 9%Cr heat-resistant steels[J]. Journal of Chinese Society of Power Engineering, 2010, 30(4): 258-262. [20]本 刊. 钢中元素对钢铁性能的影响[J]. 新疆钢铁, 2018(1): 9+13+17+61. [21]Purmensky J, Foldyna V, Kubon Z. Creep resistance and structural stability of low-alloy CrMo and CrMoV steels[J]. Key Engineering Materials, 2000, 171-174: 419-426. [22]Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering: A, 2016, 664(10): 58-74. [23]侯树森, 郭贵中, 肖淼鑫, 等. 超超临界机组用P92工艺研究[J]. 热加工工艺, 2020(22): 138-140. Hou Shusen, Guo Guizhong, Xiao Miaoxin, et al. Study on heat treatment process of P92 ferrite heat-resistant steel for ultra supercritical units[J]. Hot Working Technology, 2020(22): 138-140. [24]王利伟, 龚志华, 杨 钢, 等. 热处理工艺对2Cr12NiMo1W1V叶片钢组织和性能的影响[J]. 钢铁, 2020, 55(7): 100-105. Wang Liwei, Gong Zhihua, Yang Gang, et al. Effect of heat treatment process on microstructure and property of 2Cr12NiMo1W1V steel for steam blade[J]. Iron and Steel, 2020, 55(7): 100-105. [25]张苏鹏, 王军丽, 章震威, 等. 等通道转角挤压制备超细晶材料的最新研究进展[J]. 材料热处理学报, 2020, 41(3): 1-14. Zhang Supeng, Wang Junli, Zhang Zhenwei, et al. Latest research progress in the preparation of ultra-fine grain materials by equal channel angular pressing[J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 1-14. [26]Fan Z Q, Hao T, Zhao S X, et al. The microstructure and mechanical properties of T91 steel processed by ECAP at room temperature[J]. Journal of Nuclear Materials, 2013, 434(1-3): 417-421. [27]Song M, Zhu R, Foley D, et al. Enhancement of strength and ductility in ultrafine-grained T91 steel through thermomechanical treatments[J]. Journal of Materials Science, 2013, 48(21): 7360-7373. [28]李海昭, 梁 军, 林万鹏, 等. 正火温度对G115钢组织及室温强度的影响[J]. 材料热处理学报, 2018, 39(1): 71-76. Li Haizhao, Liang Jun, Lin Wanpeng, et al. Effect of normalizing temperature on microstructure and room temperature strength of G115 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(1): 71-76. [29]齐向前. 基于ASME规范的G115钢焊条熔敷金属的焊接及热处理工艺[J]. 焊接技术, 2019, 48(12): 49-51. Qi Xiangqian. Welding and heat treatment process of deposited metal with G115 steel electrode based on ASME specification[J]. Welding Technology, 2019, 48(12): 49-51. [30]张建斌, 刘 帆. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 材料导报, 2018, 32(8): 1318-1322. Zhang Jianbin, Liu Fan. Effect of heat treatment on δ-ferrite and impact toughness of P91 heat-resistant steel[J]. Materials Reports, 2018, 32(8): 1318-1322. [31]龚志华, 姚 斌, 王利伟, 等. 热处理工艺对2Cr11Mo1VNbN耐热钢组织和性能的影响[J]. 钢铁, 2019, 54(6): 56-62. Gong Zhihua, Yao Bin, Wang Liwei, et al. Effect of heat treatment process on microstructure and property of 2Cr11Mo1VNbN heat resistant steel[J]. Iron and Steel, 2019, 54(6): 56-62. [32]曹登云, 董治中, 王旭明, 等. 热处理工艺对CB2耐热钢组织与性能的影响[J]. 金属热处理, 2019, 44(7): 75-77. Cao Dengyun, Dong Zhizhong, Wang Xuming, et al. Effect of heat treatment process on microstructure and properties of heat-resistant steel CB2[J]. Heat Treatment of Metals, 2019, 44(7): 75-77. [33]张晓翠, 刘传慧. 热处理对超超临界汽轮发电机组用X22耐热钢组织与性能的影响[J]. 热加工工艺, 2018(14): 158-160. Zhang Xiaocui, Liu Chuanhui. Effects of heat treatment on microstructure and properties of X22 heat resistant steel for ultrasupercritical generator set[J]. Hot Working Technology, 2018(14): 158-160. [34]Liu X, Fan P, Zhu L. Characterization of dislocation evolution during creep of 9Cr1Mo steel using internal friction measurement[J]. Materials Characterization, 2019, 150: 98-106. [35]Ghassemi-Armaki H, Chen R P, Maruyama K, et al. Static recovery of tempered lath martensite microstructures during long-term aging in 9-12% Cr heat resistant steels[J]. Materials Letters, 2009, 63(28): 2423-2425. [36]Tamura M, Abe F. Changes in estimated dislocation density during creep in martensitic heat-resistant steel[J]. Journal of Materials Science Research, 2015, 4(4): 48-69. [37]宋 旼, 肖代红, 黄伯云, 等. Al-Cu-Mg-Ag合金中半共格Ω析出相与位错的交互作用[J]. 北京工业大学学报, 2008, 34(10): 1093-1097. Song Min, Xiao Daihong, Huang Boyun, et al. Interaction between semi-coherent Ω precipitates and dislocations in Al-Cu-Mg-Ag alloy[J]. Journal of Bjing University of Technology, 2008, 34(10): 1093-1097. [38]Zhao J, Gong J, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels[J]. Acta Materialia, 2018, 149(1): 19-28. [39]Paul V T, Saroja S, Vijayalakshmi M. Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures[J]. Journal of Nuclear Materials, 2008, 378(3): 273-281. [40]Xu Y, Zhang X, Tian Y, et al. Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111: 122-127. [41]Xu Y, Nie Y, Wang M, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131(1): 110-122. [42]余 涛, 刘新宝, 郝巧娥, 等. 高铬钢蠕变析出相变化分析概述[J]. 金属世界, 2016(2): 26-30. Yu Tao, Liu Xinbao, Hao Qiaoe, et al. Analysis overview of high-chromium steel creep precipitated phase change[J]. Metal World, 2016(2): 26-30. [43]Wang Z, Zhao H, Chen L, et al. Evolution and its stability of M23(C, N)6 carbonitride in martensite ferritic steel during long-term thermal aging[J]. Materials Characterization, 2019, 152: 36-43. [44]Aghajani A, Somsen Ch, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel[J]. Acta Materialia, 2009, 57(17): 5093-5106. [45]Armaki H G, Chen R, Maruyama K, et al. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 Pct Cr ferritic steels[J]. Metallurgical Materials Transactions A, 2011, 42(10): 3084-3094. [46]Dudova N, Mishnev R, Kaibyshev R. Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650 ℃[J]. Materials Science and Engineering A, 2019, 766(24): 138353. [47]Httestrand M, Andrén H O. Boron distribution in 9-12% chromium steels[J]. Materials Science Engineering A, 1999, 270(1): 33-37. [48]Gustafson A, Agren J. Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr steel[J]. ISIJ International, 2001, 41(4): 356-360. [49]Li Y, Du J, Li L, et al. Mechanical properties and phases evolution in T91 steel during long-term high-temperature exposure[J]. Engineering Failure Analysis, 2020, 111: 104451. [50]Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels[J]. Materials Science and Engineering: A, 2001, 319-321: 770-773. [51]Ghosh S. The role of tungsten in the coarsening behaviour of M23C6 carbide in 9Cr-W steels at 600 ℃[J]. Journal of Materials Science, 2010, 45(7): 1823-1829. [52]Bhadeshia H K D H. Design of ferritic creep-resistant steels[J]. ISIJ International, 2001, 41(6): 626-640. [53]Yan P, Liu Z, Bao H, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions[J]. Materials Science and Engineering A, 2013, 588: 22-28. [54]Bao Hansheng, Cheng Shichang, Liu Zhengdong, et al. Aging precipitates and strengthening mechanism of T122 boiler steel[J]. Journal of Iron and Steel Research(International), 2010, 17(2): 67-73. [55]石如星. 超超临界火电机组用P92钢组织性能优化研究[D]. 北京: 钢铁研究总院, 2011. Shi Ruxing. Investigation on optimization of microstructure and mechanical properties of P92 in ultra-supercritical units[D]. Beijing: Central Iron and Steel Research Institute, 2011. [56]Tkachev E, Belyakov A, Kaibyshev R. Creep strength breakdown and microstructure in a 9%Cr steel with high B and low N contents[J]. Materials Science and Engineering A, 2020, 772: 138821. [57]Zhang X Z, Wu X J, Liu R, et al. Influence of Laves phase on creep strength of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2017, 706: 279-286. [58]Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2014, 81: 230-240. [59]Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels[J]. Acta Materialia, 2015, 90(15): 94-104. [60]林 琳, 周荣灿, 郭 岩, 等. 应力与温度对P92钢中Laves相析出行为的影响[J]. 热力发电, 2012, 41(5): 56-60. Lin Lin, Zhou Rongcan, Guo Yan, et al. Ifluence of stress and temperature upon preciptiation behavior of Laves phase in P92 steel[J]. Thermal Power Generation, 2012, 41(5): 56-60. [61]Xu Y, Wang M, Wang Y, et al. Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging[J]. Journal of Alloys and Compounds, 2015, 621(5): 93-98. [62]Ma H, He Y, Liu Y, et al. Effects of precipitation on the scale and grain growth in 9% Cr tempered martensite steel upon steam oxidation[J]. Materials Characterization, 2020, 167: 110479. [63]Kipelova A, Belyakov A, Kaibyshev R. Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K[J]. Materials Science and Engineering A, 2012, 532: 71-77. [64]Ren J, Yu L, Liu Y, et al. Microstructure evolution and tensile properties of an Al added high-Cr ODS steel during thermal aging at 650 ℃[J]. Fusion Engineering and Design, 2020, 157: 111700. [65]Fedorova I, Belyakov A, Kozlov P, et al. Laves-phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923 K[J]. Materials Science and Engineering A, 2014, 615: 153-163. [66]Mishnev R, Dudova N, Fedoseeva A, et al. Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel[J]. Materials Science and Engineering A, 2016, 678: 178-189. [67]王志武, 宋 涛, 梅 伟, 等. 高Cr铁素体耐热钢中的Z相[J]. 金属热处理, 2012, 37(4): 1-5. Wang Zhiwu, Song Tao, Mei Wei, et al. Z phase in high Cr ferritic heat resistant steel[J]. Heat Treatment of Metals, 2012, 37(4): 1-5. [68]Danielsen H K, Hald J. Behaviour of Z phase in 9-12%Cr steels[J]. Energy Materials, 2006, 1(1): 49-57. [69]Sawada K, Kushima H, Kimura K, et al. Z-phase formation and its effect on long-term creep strength in 9-12%Cr creep resistant steels[J]. Transactions of the Indian Institute of Metals, 2010, 63(2/3): 117-122. [70]Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013002. [71]Golpayegani A, Andrén H O, Danielsen H, et al. A study on Z-phase nucleation in martensitic chromium steels[J]. Materials Science and Engineering A, 2008, 489(1/2): 310-318. |
[1] | 代永娟, 武祥祥, 李佳坤, 国栋, 王波. 退火温度对Fe-24.38Mn-0.44C TWIP钢组织性能的影响[J]. 金属热处理, 2022, 47(2): 146-152. |
[2] | 卢毓华, 王海舟, 付锐, 李福林, 李冬玲, 黄丹琪, 蔡文毅. 不同固溶冷速GH4096高温合金在高温蠕变测试中γ′相的演变行为[J]. 金属热处理, 2021, 46(9): 173-179. |
[3] | 何利军, 周龙, 汤淳坡, 郭小钢, 金晓, 赵彦芬, 薛飞, 张国栋. 长时服役后T92钢管的微观组织及力学性能变化[J]. 金属热处理, 2021, 46(7): 31-36. |
[4] | 朱飞, 罗小兵, 杨才福, 柴锋, 张正延. 时效温度对直接淬火Ni-Cr-Mo-V-Cu钢组织及性能的影响[J]. 金属热处理, 2021, 46(11): 54-63. |
[5] | 史文杰, 王春华. Al-6.8Zn-2.3Mg-2.0Cu-0.15Sc合金的高温回归再时效工艺[J]. 金属热处理, 2020, 45(7): 63-67. |
[6] | 许婷, 李梅娥, 吴冰洁, 杜华, 王晓童, 方亮. SA508-3钢动态再结晶过程的相场模拟[J]. 金属热处理, 2020, 45(10): 204-211. |
[7] | 朱 敏,朱万全,帅林飞,马国强,吴桂林. 表面纳米化过程中18CrNiMo7-6钢的软化与硬化[J]. 金属热处理, 2019, 44(1): 152-156. |
[8] | 尹翠兰. 1000 MPa级热轧双相钢的微观组织及强化机制[J]. 金属热处理, 2016, 41(2): 54-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn