[1]陈永星, 朱 胜, 王晓明, 等. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138. Chen Yongxing, Zhu Sheng, Wang Xiaoming, et al. Progress in preparation and research of high entropy alloys[J]. Journal of Materials Engineering, 2017, 45(11): 129-138. [2]孙昭媛. 高熵合金的制备及其组织和力学性能的研究[D]. 长春: 吉林大学, 2014. Sun Zhaoyuan. Preparation of high-entropy alloy and research on microstructure and mechanical properties[D]. Changchun: Jilin University, 2014. [3]Wang Ze, Wang Cheng, Zhao Yilu, et al. Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films[J]. Vacuum, 2020, 179: 109553. [4]吴学宏. 高熵合金结构安全性能智能检测系统应用研究[J]. 世界有色金属, 2019(14): 274-275. Wu Xuehong. Application of intelligent detection system for safety performance of high entropy alloy structures[J]. World Nonferrous Metals, 2019(14): 274-275. [5]Astafurova E G, Reunova K A, Melnikov E V, et al. On the difference in carbon- and nitrogen-alloying of equiatomic FeMnCrNiCo high-entropy alloy[J]. Materials Letters, 2020, 276(1): 128-183. [6]Xu Qin, Chen Dezhi, Tan Chongyang, et al. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure[J]. Journal of Materials Science & Technology, 2021, 60(10): 1-7. [7]刘 亮. 合金元素对高熵合金组织与性能的影响[D]. 长春: 吉林大学, 2012. Liu Liang. Effects of alloy elements on microstructure and properties of high entropy alloys[D]. Changchun: Jilin University, 2012. [8]Liu Zhongli, Li Yanxiang, Chen Xiang. Effect of tempering temperature on microstructure and mechanical properties of high boron white cast iron[J]. China Foundry, 2012, 9(4): 313-317. [9]Zhang Jianjun, Gao Yimin, Xing Jiandong, et al. Effects of forging and heat treatment on microstructure and properties of high boron white cast iron[J]. Key Engineering Materials, 2011, 1036: 225-230. [10]秦录芳, 孙 涛. 干切削技术的研究和应用进展[J]. 组合机床与自动化加工技术, 2013(4): 9-12, 17. Qin Lufang, Sun Tao. Research and application progresses of dry cutting technology[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(4): 9-12, 17. [11]吴克忠, 陈永洁, 朱丹丹. 干式切削及其刀具技术[J]. 硬质合金, 2005(1): 47-50. Wu Kezhong, Chen Yongjie, Zhu Dandan. Dry cutting and its tools technology[J]. Cemented Carbide, 2005(1): 47-50. [12]张伯霖, 夏红梅, 黄晓明. 新世纪的干切削技术[J]. 制造技术与机床, 2001(10): 9-11, 3. Zhang Bolin, Xia Hongmei, Huang Xiaoming. Dry cutting technology of the new century[J]. Manufacturing Technology and Machine Tool, 2001(10): 9-11, 3. [13]叶伟昌. 干切削刀具及其应用[J]. 机械工程师, 2000(6): 5-7. Ye Weichang. Dry cutting tool and its usage[J]. Mechanical Engineer, 2000(6): 5-7. [14]苏闯南. 表面微织构硬质合金刀具干切削性能研究[D]. 湘潭: 湖南科技大学, 2017. Su Chuangnan. Research on dry cutting performance of surface micro-texture carbide tool[D]. Xiangtan: Hunan University of Science and Technology, 2017. [15]杨 俊, 何辉波, 李华英, 等. 基于切削力和表面粗糙度的干切削参数优化[J]. 西南大学学报(自然科学版), 2014, 36(12): 187-192. Yang Jun, He Huibo, Li Huaying, et al. Optimization of dry cutting parameters based on cutting force and surface roughness[J]. Journal of Southwest University(Natural Science Edition), 2014, 36(12): 187-192. [16]韩文强, 何辉波, 李华英, 等. TiN涂层刀具对20CrMo钢的干切削性能的影响及磨损机理[J]. 中南大学学报(自然科学版), 2014, 45(1): 64-70. Han Wenqiang, He Huibo, Li Huaying, et al. Effect of TiN coated tools on machinability and wear mechanism in dry turning of 20CrMo steel[J]. Journal of Central South University(Science and Technology), 2014, 45(1): 64-70. [17]张显银. TiCN、TiAlN和TiAlCrN涂层刀具的干切削性能及磨损机理研究[D]. 重庆: 西南大学, 2018. Zhang Xianyin. Research on dry cutting performance and wear mechanism of TiCN, TiAlN and TiAlCrN coated tools[D]. Chongqing: Southwest University, 2018. [18]方 斌, 黄传真, 许崇海, 等. 涂层刀具的研究现状[J]. 机械工程师, 2005(10): 25-28. Fang Bin, Huang Chuanzhen, Xu Chonghai, et al. A survey on coating tools for metal cutting[J]. Mechanical Engineer, 2005(10): 25-28. [19]陈 磊. 硬质相WC和TiC对激光熔覆高熵合金MoFeCrTiW涂层组织与性能的影响[D]. 贵阳: 贵州大学, 2015. Chen Lei. Effect of WC/TiC on the structure and properties of MoFeCrTiW high entropy alloy coating prepared by laser cladding[D]. Guiyang: Guizhou University, 2015. [20]Li Qingtang, Lei Yongping, Fu Hanguang, et al. Microstructure and mechanical properties of in situ (Ti, Nb)Cp/Fe-based laser composite coating prepared with different heat inputs[J]. Rare Metals, 2018, 37(10): 852-858. [21]Boettinger W J, Aziz M J. Theory for the trapping of disorder and solute in intermetallic phases by rapid solidification[J]. Acta Metallurgica, 1989, 37(12): 3379-3391. [22]Sathiaraj G D, Tsai C W, Yeh J W, et al. The effect of heating rate on microstructure and texture formation during annealing of heavily cold-rolled equiatomic CoCrFeMnNi high entropy alloy[J]. Journal of Alloys and Compounds, 2016, 688(15): 752-761. [23]吕昭平, 蒋虽合, 何骏阳, 等. 先进金属材料的第二相强化[J]. 金属学报, 2016, 52(10): 1183-1198. Lü Zhaoping, Jiang Suihe, He Junyang, et al. Second phase strengthening in advanced metal materials[J]. Acta Metallurgica Sinica, 2016, 52(10): 1183-1198. [24]Qian Feng, Zhao Dongdong, Mørtsell E A, et al. Enhanced nucleation and precipitation hardening in Al-Mg-Si(-Cu) alloys with minor Cd additions[J]. Materials Science and Engineering A, 2020, 792(5): 139698. [25]Sang Hun Shim, Seung Min Oh, Jeongkuk Lee, et al. Nanoscale modulated structures by balanced distribution of atoms and mechanical/structural stabilities in CoCuFeMnNi high entropy alloys[J]. Materials Science and Engineering A, 2019, 762(5): 138120. [26]夏 天. 纳米颗粒弥散强化超细晶高温合金的显微组织和力学性能[D]. 上海: 上海交通大学, 2018. Xia Tian. Microsturcture and mechanical properties of nanoparticle dispersion strengthened ultrafine grained superalloys[D]. Shanghai: Shanghai Jiao Tong University, 2018. [27]Xiao Jinkun, Tan Hong, Wu Yuqing, et al. Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying[J]. Surface and Coatings Technology, 2020, 385(15): 125430. [28]Poulia A, Georgatis E, Lekatou A, et al. Microstructure and wear behavior of a refractory high entropy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2016, 57: 50-63. [29]Cui Mengke, Xu Changcheng, Shen Yongqian, et al. Electrospinning superhydrophobic nanofibrous poly(vinylidene fluoride)/stearic acid coatings with excellent corrosion resistance[J]. Thin Solid Films, 2018, 657: 88-94. [30]Wang Qinying, Xi Yuchen, Zhao Yunhong, et al. Effects of laser re-melting and annealing on microstructure, mechanical property and corrosion resistance of Fe-based amorphous/crystalline composite coating[J]. Materials Characterization, 2017, 127: 239-247. |