[1] 王志新, 周家臣, 马明星, 等. 退火对AlCoCrFeMnTi高熵合金相组成与显微形貌的影响[J]. 金属热处理, 2020, 45(4): 144-148. Wang Zhixin, Zhou Jiachen, Ma Mingxing, et al. Effect of annealing on phase composition and morphology of AlCoCrFeMnTi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(4): 144-148. [2] 张仁奇, 樊 磊, 周宝钢, 等. 选区激光熔化316L不锈钢的各向组织与性能[J]. 金属热处理, 2020, 45(9): 161-166. Zhang Renqi, Fan Lei, Zhou Baogang, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions[J]. Heat Treatment of Metals, 2020, 45(9): 161-166. [3] 卢金斌, 彭竹琴, 马明星, 等. Q235钢等离子熔覆CoCrCuFeMnNi高熵合金涂层[J]. 金属热处理, 2016, 41(4): 51-54. Lu Jinbin, Peng Zhuqin, Ma Mingxing, et al. CoCrCuFeMnNi high-entropy alloy coating prepared by plasma cladding on Q235 steel[J]. Heat Treatment of Metals, 2016, 41(4): 51-54. [4] 霍文燚, 时海芳. 熔覆电流对氩弧熔覆FeCrNiCoMn高熵合金涂层组织及显微硬度的影响[J]. 金属热处理, 2014, 39(9): 45-47. Huo Wenyi, Shi Haifang. Research progress of laser cladding technology to prepare high-entropy alloy coating[J]. Heat Treatment of Metals, 2014, 39(9): 45-47. [5] Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526-529. [6] Lu Jinbin, Wang Bangfu, Qiu Xinkai, et al. Microstructure evolution and properties of CrCuFexNiTi high-entropy alloy coating by plasma cladding on Q235[J]. Surface and Coatings Technology, 2017, 328: 313-318. [7] 王浩玉, 农智升, 王继杰, 等. AlxCrFeNiTi系高熵合金成分和弹性性质关系[J]. 物理学报, 2019, 68(3): 212-221. Wang Haoyu, Nong Zhisheng, Wang Jijie, et al. Relationship between compositions and elastic properties of AlxCrFeNiTi high entropy alloys[J]. Acta Physica Sinica, 2019, 68(3): 212-221. [8] Liao Mingqing, Liu Yong, Min Lujin, et al. Alloying effect on phase stability, elastic and thermodynamic properties of Nb-Ti-V-Zr high entropy alloy[J]. Intermetallics, 2018, 101: 152-164. [9] 王 根, 李新梅. 第一性原理计算了Cu、Co含量对CoCuFeNi系高熵合金的影响[J]. 功能材料, 2020(3): 3189-3195. Wang Gen, Li Xinmei. Effects of Cu, Co contents on CoCuFeNi system high-entropy alloys by the first principle calculation[J]. Journal of Functional Materials, 2020(3): 3189-3195. [10] Liu Xuan, Sha Gang, Wu Qinli, et, al. Phase stability of an high-entropy Al-Cr-Fe-Ni-V alloy with exceptional mechanical properties: First-principles and APT investigations[J]. Computational Materials Science, 2019, 170: 109161-1-109161-9. [11] Segall M D, Philip J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [12] Winkler B, Pickard C, Milman V. Applicability of a quantum mechanical ‘virtual crystal approximation' to study Al/Si-disorder[J]. Chemical Physics Letters, 2002, 362(3/4): 266-270. [13] Larkin J M, Mcgaughey A J H. Predicting alloy vibrational mode properties using lattice dynamics calculations, molecular dynamics simulations, and the virtual crystal approximation[J]. Journal of Applied Physics, 2013, 114(2): 023507-1-023507-14. [14] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [15] Hamalm D R, Schluter M, Chiang C, et al. Norm-conserving pseudopotentials[J]. Physical Review Letters, 1979, 43(20): 1494-1497. [16] Wu Hao, Huang Sirui, Zhua Chengyan, et al. Influence of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys[J]. Progress in Natural Science: Materials International, 2020, 30: 239-245. [17] Anderson O L. A simplified method for calculating the debye temperature from elastic constants[J]. Journal of Physics and Chemistry Solids, 1963, 24(7): 909-917. [18] Gu X J, Mcdermott A G, Poon S J. Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel[J]. Applied Physics Letters, 2006, 88(23): 211905-1-211905-3. |