[1] 支金花, 张 敏, 王 裕, 等. 04Cr13Ni5Mo钢的热处理工艺及组织性能[J]. 金属热处理, 2018, 43(4): 53-56. Zhi Jinhua, Zhang Min, Wang Yu, et al. Heat treatment of 04Cr13Ni5Mo steel and its microstructure and properties[J]. Heat Treatment of Metals, 2018, 43(4): 53-56. [2] 周 鹏, 李 杰, 史洪源. 40Cr13马氏体不锈钢淬火组织及表面氧化皮的显微分析[J]. 金属热处理, 2019, 44(9): 234-237. Zhou Peng, Li Jie, Shi Hongyuan. Analysis of quenched microstructure and surface oxide scales of 40Cr13 stainless steel[J]. Heat Treatment of Metals, 2019, 44(9): 234-237. [3] 石全强, 单以银, 严 伟, 等. 一种高碳高铬马氏体不锈钢及其制备方法, 中国: CN108642408A[P]. 2018-10-12. [4] Kuzucu V, Aksoy M, Korkut M H. The effect of strong carbide-forming elements such as Mo, Ti, V and Nb on the microstructure of ferritic stainless steel[J]. Journal of Materials Processing Technology, 1998, 82(1-3): 165-171. [5] 白 鹤, 王伯健, 丰振军, 等. 淬火温度对含钼马氏体不锈钢组织性能的影响[J]. 材料研究与应用, 2010, 4(2): 120-124. Bai He, Wang Bojian, Feng Zhenjun, et al. Effect of quenching temperature on microstructure and properties of martensitic stainless steel containing Mo element[J]. Materials Research and Application, 2010, 4(2): 120-124. [6] 周强国, 石全强, 严 伟, 等. 正火温度对含硅型高铬马氏体耐热钢性能的影响[J]. 材料研究学报, 2013, 27(5): 461-468. Zhou Qiangguo, Shi Quanqiang, Yan Wei, et al. Effect of normalizing temperature on mechanical properties of a Si-bearing high chromium martensitic heat resistant steel[J]. Chinese Journal of Materials Research, 2013, 27(5): 461-468. [7] 刘晨曦, 张旦天, 刘永长, 等. 改进高Cr铁素体耐热钢奥氏体化行为[J]. 材料热处理学报, 2011, 32(10): 67-73. Liu Chenxi, Zhang Dantian, Liu Yongchang, et al. Austenitizing behavior of modified high-Cr ferritic heat resistant steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(10): 67-73. [8] 周强国, 严 伟, 王 威, 等. 含硅型高铬马氏体耐热钢的回火脆性研究[J]. 原子能科学技术, 2013(S2): 406-411. Zhou Qiangguo, Yan Wei, Wang Wei, et al. Temper embrittlement in Si-bearing high chromium martensitic heat resistant steel[J]. Atomic Energy Science and Technology, 2013(S2): 406-411. [9] Yu W T, Jing L, Shi C B, et al. Effect of titanium on the microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV[J]. Metals-Open Access Metallurgy Journal, 2016, 6(8): 193. [10] Lin Y L, Lin C C, Tsai T H, et al., Microstructure and mechanical properties of 0.63C-12.7Cr martensitic stainless steel during various tempering treatments[J]. Materials and Manufacturing Processes, 2010, 25(4): 246-248. [11] Zhou X, Fang F, Li G, et al. Morphology and properties of M2C eutectic carbides in AISI M2 steel[J]. ISIJ International, 2010, 50(8): 1151-1157. [12] Zhou B, Yu S, Chen J, et al. Breakdown behavior of eutectic carbide in high speed steel during hot compression[J]. Journal of Iron and Steel Research, 2011(1): 41-48. [13] 刘天琦, 冯抗屯, 陈天运, 等. 30Cr2MnSiNi2WMo钢组织研究[J]. 金属热处理, 2015, 40(6): 65-68. Liu Tianqi, Feng Kangtun, Chen Tianyun, et al. Microstructure of 30Cr2MnSiNi2WMo steel[J]. Heat Treatment of Metals, 2015, 40(6): 65-68. [14] Yang G, Sun X, Li X, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials and Design, 2013, 50(1): 102-107. [15] Gunduz S, Cochrane R C. Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel[J]. Materials and Design, 2005, 26(6): 486-492. [16] 陈四红, 吕曼祺, 张敬党, 等. 含Cu抗菌不锈钢的微观组织及其抗菌性能[J]. 金属学报, 2004, 40(3): 314-318. Chen Sihong, Lü Manqi, Zhang Jingdang, et al. Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel[J]. Acta Metallurgica Sinica, 2004, 40(3): 314-318. |