[1]夏云春. 高温火直接作用下钢梁抗火性能试验研究[J]. 建筑结构学报, 2017, 38(4): 90-97. Xia Yunchun. Experimental research on fire resistance of steel beam directly acted by fierce fire[J]. Journal of Building Structures, 2017, 38(4): 90-97. [2]李国强, 郭士雄. 受火约束钢梁在升温段和降温段行为的理论分析[J]. 防灾减灾工程学报, 2006, 26(3): 242-250. Li Guoqiang, Guo Shixiong. Analysis of restrained steel beams subjected to temperature increasing and descending[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(3): 242-250. [3]杨秀萍, 姚 斌, 门玉涛. 不同升温条件下钢梁火灾行为的有限元分析[J]. 火灾科学, 2007, 16(3): 157-161. Yang Xiuping, Yao Bin, Men Yutao. Finite element analysis of fire behavior of steel beam under different elevated temperature conditions[J]. Fire Safety Science, 2007, 16(3): 157-161. [4]李 娟, 姚 斌, 胡 军. 温升速率对某防火保护简支钢梁耐火时间的影响[J]. 火灾科学, 2010, 19(1): 38-44. Li Juan, Yao Bin, Hu Jun. Effect of temperature rise rate on fire resistance period of a simple supported beam with fire coating[J]. Fire Safety Science, 2010, 19(1): 38-44. [5]李国强, 韩林海, 楼国彪, 等. 钢结构及钢-混凝土组合结构抗火设计[M]. 北京: 中国建筑工业出版社, 2006. [6]张威振, 徐志胜. 耐火耐候钢的研究与应用[J]. 钢结构, 2004, 19(4): 53-55. Zhang Weizhen, Xu Zhisheng. Study and application of fire-resistant and weather-resistant steel[J]. Steel Construction, 2004, 19(4): 53-55. [7]唐 静. V、Nb对Mn-Mo-Ti系耐火钢CCT曲线及组织与性能的影响[J]. 金属热处理, 2013, 38(9): 92-95. Tang Jing. Effects of V and Nb on CCT curves of Mn-Mo-Ti fireresistant steel and its microstructure and properties[J]. Heat Treatment of Metals, 2013, 38(9): 92-95. [8]贺 静, 刘锦云, 丛 慧, 等. 合金元素Mo与V对建筑用耐火钢的影响[J]. 西华大学学报(自然科学版), 2005, 24(5): 85-87. He Jing, Liu Jinyun, Cong Hui, et al. Effect of alloy elements Mo and V on fire-resistant steels used in buildings[J]. Journal of Xihua University Natural Science, 2005, 24(5): 85-87. [9]曹双梅, 李 聪, 刘文庆. Nb-V复合对耐火钢力学性能的影响[J]. 材料热处理学报, 2016, 34(2): 47-51. Cao Shuangmei, Li Cong, Liu Wenqing. Effects of niobium and vanadium on mechanical properties of fire resistant steels[J]. Transactions of Materials and Heat Treatment, 2016, 34(2): 47-51. [10]Sha W. Fire resistance of floors constructed with fire-resistance steels[J]. Journal of Structural Engineering, 1998, 124(6): 664-670. [11]Assefpour-Dezfuly M, Hugaas B A, Brownring A. Fire resistance high strength low-alloy steels[J]. Materials Science Technology, 1990, 6(12): 1210-1214. [12]雍歧龙, 马鸣图, 吴宝容. 微合金钢—物理和力学冶金[M]. 北京: 机械工业出版社, 1989. [13]方鸿生, 刘东雨, 徐平光. 贝氏体钢的强韧化途径[J]. 机械工程材料, 2001, 25(6): 1-5. Fang Hongsheng, Liu Dongyu, Xu Pingguang. The ways to improve strength and toughness of bainitic steel[J]. Materials for Mechanical Engineering, 2001, 25(6): 1-5. [14]沈俊昶, 杨才福, 马鸣图, 等. 耐火钢综合性能及构件抗火试验分析[J]. 钢结构, 2006, 21(4): 87-91. Shen Junchang, Yang Caifu, Ma Mingtu, et al. Properties of fire-resistant steels and fire test on structural member[J]. Steel Construction, 2006, 21(4): 87-91. [15]刘志勇, 杨才福, 沈俊昶, 等. 建筑用耐火钢组织与性能的研究[J]. 钢结构, 2005, 20(4): 75-79. Liu Zhiyong, Yang Caifu, Shen Junchang, et al. A study on microstructure and mechanical properties of fire-resistant steels[J]. Steel Construction, 2005, 20(4): 75-79. [16]Chijiiwa R, Yoshida Y, Uemori R, et al. Development and practical application of fire-resistant steel for buildings[J]. Nippon Steel Technical Report, 1993, 58: 47-55. [17]Kim B C, Lee S, Kim N J, et al. Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds[J]. Metallurgical Transaction A, 1991, 22(1): 139-149. [18]Lee S, Kim B C, Kwon D. Correlation of microstructure and fracture properties in weld heat-affected zones of thermomechanically controlled processed steels[J]. Metallurgical and Materials Transaction A, 1992, 23(10): 2803-2816. [19]赵 捷, 王志奇, 李建平. 低碳粒状贝氏体钢强韧化机理的探讨[J]. 天津理工学院学报, 2000, 16(1): 11-15. Zhao Jie, Wang Zhiqi, Li Jianping. Study on the mechanism of strengthening and toughening of low carbon bainitic steel[J]. Journal of Tianjin Insitute of Technology, 2000, 16(1): 11-15. |