[1]迟成宇, 于鸿垚, 谢锡善, 等. 世界700 ℃等级先进超超临界电站关键高温材料[J]. 世界钢铁, 2013, 13(2): 42-59. Chi Chengyu, YuHongyao, Xie Xishan, et al. Critical high temperature materials for 700 ℃ A-USC power plants[J]. World Iron and Steel, 2013, 13(2): 42-59. [2]Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11/12): 778-783. [3]林富生, 谢锡善, 赵双群, 等. 我国 700 ℃超超临界锅炉过热器管用高温合金选材探讨[J]. 动力工程学报, 2011, 31(12): 960-967. Lin Fusheng, Xie Xishan, Zhao Shuangqun, et al. Selection of superalloys for superheater tubes of domestic 700 ℃ A-USC boilers[J]. Chinese Journal of Power Engineering, 2011, 31(12): 960-967. [4]向雪梅, 董建新, 江 河, 等. 617B镍基高温合金长期时效组织演变[J]. 稀有金属材料与工程, 2019, 48(3): 865-872. Xiang Xuemei, Dong Jianxin, Jiang He, et al. Microstructure evolution of 617B Ni-based superalloy during long-term aging[J]. Rare Metal Materials and Engineering, 2019, 48(3): 865-872. [5]杨 康, 祝志超, 张雪姣, 等. 镍基617合金的热变形和动态再结晶行为[J]. 材料热处理学报, 2019, 40(10): 151-157. Yang Kang, Zhu Zhichao, Zhang Xuejiao, et al. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617[J]. Transactions of Materials and Heat Treatment, 2019, 40(10): 151-157. [6]郭翔宇. 617镍基合金焊接接头不同温度下断裂韧性研究[D]. 上海: 上海交通大学, 2019. [7]Gariboldi E, Cabibbo M, Spigarelli S, et al. Investigation on precipitation phenomena of Ni-22Cr-12Co-9Mo alloy aged and crept at high temperature[J]. International Journal of Pressure Vessels and Piping, 2007, 85(1): 63-71. [8]张 凯, 师梦杰, 郑合凤, 等. Inconel 617合金中第二相的析出规律研究[J]. 原子能科学技术, 2019, 53(12): 2428-2434. Zhang Kai, Shi Mengjie, Zheng Hefeng, et al. Precipitation mechanism of secondary phase in Inconel 617 alloy[J]. Atomic Energy Science and Technology, 2019, 53(12): 2428-2434. [9]Chomette S, Gentzbittel J M, Viguier B. Creep behavior of as received, aged and cold worked Inconel 617 at 850 ℃ and 950 ℃[J]. Journal of Nuclear Materials, 2010, 399: 266-274. [10]Marcello C, Elisabett A G, Stefano S, et al. Creep behavior of Incoloy alloy 617[J]. Journal of Materials Science, 2008, 43(8): 2912-2921. [11]郭 岩, 侯淑芳, 周荣灿, 等. 晶界M23C6碳化物对IN617合金力学性能的影响[J]. 动力工程学报, 2010, 30(10): 804-808. Guo Yan, Hou Shufang, Zhou Rongcan, et al. Effect of grain-boundary M23C6 carbides on mechanical properties of Inconel alloy 617[J]. Chinese Journal of Power Engineering, 2010, 30(10): 804-808. [12]郭 岩, 周荣灿, 侯淑芳, 等. 镍基合金的析出相及强化机制[J]. 金属热处理, 2011, 36(7): 46-50. Guo Yan, Zhou Rongcan, Hou Shufang, et al. Precipitates and strengthening mechanism in Ni-based alloys[J]. Heat Treatment of Metals, 2011, 36(7): 46-50. [13]孙艳容. 不同热处理制度对Inconel718合金组织和性能的影响[D]. 成都: 西南石油大学, 2018. [14]田仲良, 陈正宗, 何西扣, 等. 固溶处理对超超临界电站用镍基耐热合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 97-102. Tian Zhongliang, Chen Zhengzong, He Xikou, et al. Effect of solution treatment on microstructure and mechanical properties of heat-resisting Ni-based alloy used for ultra-supercritical power plant[J]. Heat Treatment of Metals, 2020, 45(3): 97-102. [15]Wang X, Huang Z W, Cai B, et al. Formation mechanism of abnormally large grains in a polycrystalline nickel-based superalloy during heat treatment processing[J]. Acta Materialia, 2019, 168: 287-298. [16]陈正宗, 刘正东, 包汉生, 等. 固溶处理对CN617耐热合金组织和硬度的影响[J]. 金属热处理, 2014, 39(12): 27-30. Chen Zhengzong, Liu Zhengdong, Bao Hansheng, et al. Effects of solution treatment on microstructure and hardness of heat-resistant alloy CN617[J]. Heat Treatment of Metals, 2014, 39(12): 27-30. [17]Rai A K, Trpathy H, Hajra R N, et al. Thermophysical properties of Ni based superalloy 617[J]. Journal of Alloys and Compounds, 2017, 698: 442-450. [18]丰 涵, 宋志刚, 郑文杰, 等. 固溶处理对Inconel690合金组织和力学性能的影响[J]. 钢铁研究学报, 2009, 21(3): 46-50. Feng Han, Song Zhigang, Zheng Wenjie, et al. Effect ofsolution treatment on microstructure and mechanical property of Inconel 690[J]. Journal of Iron and Steel Research, 2009, 21(3): 46-50. [19]Wu T Z, Shan L J, Rui H, et al. Effects ofsolution heat treatment on carbide of Ni-Cr-W superalloy[J]. Rare Metal Materials and Engineering, 2010, 39(7): 1157-1161. [20]Wang M, Xiao D H, Liu W S, et al. Effect of Si addition on microstructure and properties of magnesium alloys with high Al and Zn contents[J]. Vacuum, 2017, 141: 144-151. [21]Zhang H L, Ding H S, Wang Q, et al. Microstructures and tensile properties of directionally solidified Ti-45Al-2Cr-2Nb alloy by electromagnetic cold crucible zone melting technology with Y2O3 moulds[J]. Vacuum, 2018, 148: 206-213. |