[1]宋仁伯, 冯一帆, 彭世广, 等. 高锰钢衬板的研究及应用[J]. 材料导报, 2015, 29(19): 74-78. Song Renbo, Feng Yifan, Peng Shiguang, et al. Research and application of high manganese steel lining plate[J]. Materials Reports, 2015, 29(19): 74-78. [2]Srivastava A K, Das K. Microstructural characterization of Hadfield austenitic manganese steel[J]. Journal of Materials Science, 2008, 43(16): 5654-5658. [3]赵培峰, 国秀花, 宋克兴. 高锰钢的研究与应用进展[J]. 材料开发与应用, 2008(4): 85-88. [4]袁献文. 高锰钢的加工硬化特性及影响使用性能的因素[J]. 矿山机械, 1980(4): 48-55. [5]Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels[J]. Materials Science and Engineering A, 2016, 652: 69-76. [6]Zambrano O A. A general perspective of Fe-Mn-Al-C steels[J]. Journal of Materials Science, 2018, 53: 14003-14062. [7]Xiong R, Peng H, Wang S, et al. Effect of stacking fault energy on work hardening behaviors in Fe-Mn-Si-C high manganese steels by varying silicon and carbon contents[J]. Materials and Design, 2015, 85: 707-714. [8]Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering A, 2004, 387: 158-162. [9]Zambrano O A, Valdés J, Aguilar Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation[J]. Materials Science and Engineering A, 2017, 689: 269-285. [10]Hwang S W, Ji J H, Park K T. Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels[J]. Materials Science and Engineering A, 2011, 528(24): 7267-7275. [11]Abbasi M, Kheirandish S, Kharrazi Y, et al. On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels[J]. Wear, 2010, 268(1/2): 202-207. [12]Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Materialia, 2016, 116: 188-199. [13]Kim H, Suh D, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 1-10. [14]Jeong J, Lee C, Park I, et al. Isothermal precipitation behavior of κ-carbide in the Fe-9Mn-6Al-0.15C lightweight steel with a multiphase microstructure[J]. Journal of Alloys and Compounds, 2013, 574: 299-304. [15]Kimura Y, Hayashi K, Handa K, et al. Microstructural control for strengthening the g-Fe/E21-(Fe, Mn)3AlCx alloys[J]. Materials Science and Engineering A, 2002, 329-331: 680-685. [16]Zhu S M, Tjong S C. Creep and rupture properties of an austenitic Fe-30Mn-9Al-1C alloy[J]. Metallurgical and Materials Transactions A, 1998, 29(1): 299-306. [17]Hosoda H, Miyazaki S, Mishima Y. Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams[J]. Journal of Phase Equilibria, 2001, 22(4): 394-399. [18]Sohn S S, Lee B J, Lee S, et al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J]. Acta Materialia, 2013, 61(15): 5626-5635. |