[1]唐群华, 蔡小勇, 戴品强. CoCrFeMnNi高熵合金冷轧及退火后的晶界特征分布[J]. 金属热处理, 2016, 41(1): 217-221. Tang Quanhua, Cai Xiaoyong, Dai Pinqiang. Grain boundary character distribution in CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing[J]. Heat Treatment of Metals, 2016, 41(1): 217-221. [2]张太超, 李俊魁, 王旭彪. CoCrFeMnNi高熵合金的相稳定性[J]. 金属热处理, 2018, 43(9): 10-15. Zhang Taichao, Li Junkui, Wang Xubiao. Phase stability of CoCrFeMnNi high entropy alloys[J]. Heat Treatment of Metals, 2018, 43(9): 10-15. [3]Zhao Y, Lee D H, Seok M Y, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement[J]. Scripta Materialia, 2017, 135: 54-58. [4]Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy[J]. Materials Science and Engineering A, 2018, 736: 156-166. [5]Liverani E, Fortunato A, Leardini A, et al. Fabrication of Co-Cr-Mo endoprosthetic ankle devices by means of selective laser melting (SLM)[J]. Materials and Design, 2016, 106: 60-68. [6]朱文志, 党明珠, 田 健, 等. 激光能量密度对激光选区熔化Cu-Al-Ni-Ti合金相对密度, 微观组织和力学性能的影响[J]. 机械工程学报, 2020, 56(15): 53-64. Zhu Wenzhi, Dang Mingzhu, Tian Jian, et al. Effect of laser energy density on relative density, microstructure and mechanical properties of Cu-Al-Ni-Ti alloy fabricated by selective laser melting[J]. Journal of Mechanical Engineering, 2020, 56(15): 53-64. [7]Chen Y, Guo Y, Xu M, et al. Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser[J]. Materials Science and Engineering A, 2019, 754(29): 339-347. [8]Zhang B, Xiu M, Tan Y T, et al. Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments[J]. Applied Surface Science, 2019, 490: 556-567. [9]Zhu Z G, Nguyen Q B, Ng F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154: 20-24. [10]Li Z, He B, Guo Q. Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes[J]. Scripta Materialia, 2020, 177: 17-21. [11]陈素明, 胡生双, 张 颖, 等. 退火工艺对增材制造TC18钛合金力学性能和组织的影响[J]. 金属热处理, 2020, 45(8): 149-153. Chen Suming, Hu Shengshuang, Zhang Ying, et al. Effect of annealing process on mechanical properties and microstructure of additive manufactured TC18 titanium alloy[J]. Heat Treatment of Metals, 2020, 45(8): 149-153. [12]张仁奇, 樊 磊, 周宝刚, 等. 选区激光熔化316L不锈钢的各向组织与性能[J]. 金属热处理, 2020, 45(9): 167-172. Zhang Renqi, Fan Lei, Zhou Baogang, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions[J]. Heat Treatment of Metals, 2020, 45(9): 167-172. [13]Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy[J]. International Journal of Hydrogen Energy, 2019, 44(31): 17163-17167. [14]Fu Z H, Yang B J, Chen M, et al. Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6970-6978. [15]Ichii K, Koyama M, Tasan C C, et al. Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys[J]. Scripta Materialia, 2018, 150: 74-77. [16]Kim Y K, Choe J, Lee K A. Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism[J]. Journal of Alloys and Compounds, 2019, 805: 680-691. [17]Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392. [18]Zhong Y, Liu L, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting[J]. Journal of Nuclear Materials, 2016, 470: 170-178. |