[1]Xu Jianyan, Kong Dejun. Corrosive-wear and electrochemical performance of laser thermal sprayed Co30Cr8W1. 6C3Ni1. 4Si coating on Ti6Al4V alloy[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2020, 35(4): 812-819. [2]刘亚楠, 孙荣禄, 张天刚. Ni对钛合金表面稀土激光熔覆层中TiC生长的影响[J]. 金属热处理, 2018, 43(9): 16-21. Liu Ya'nan, Sun Ronglu, Zhang Tiangang. Influence of Ni on TiC growth in rare earth laser clad layer on titanium alloy[J]. Heat Treatment of Metals, 2018, 43(9): 16-21. [3]Shao Jinzhong, Li Jun, Song Rui, et al. Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti) matrix coating produced by laser cladding[J]. Rare Metals, 2020, 39(7): 304-315. [4]Feng Xiaotian, Lei Jianbo, Gu Hong, et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy[J]. Chinese Physics B, 2019, 28(2): 383-390. [5]刘 丹, 陈志勇, 陈科培, 等. TC4钛合金表面激光熔覆复合涂层的组织和耐磨性[J]. 金属热处理, 2015, 40(3): 58-62. Liu Dan, Chen Zhiyong, Chen Kepei, et al. Microstructure and wear resistance of laser clad composite coating on TC4 titanium alloy surface[J]. Heat Treatment of Metals, 2015, 40(3): 58-62. [6]Adesina O S, Obadele B A, Farotade G A, et al. Influence of phase composition and microstructure on corrosion behavior of laser based Ti-Co-Ni ternary coatings on Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2020, 827: 154245. [7]张蕾涛, 张红星, 刘德鑫, 等. 激光熔覆复合涂层裂纹产生原因及控制研究进展[J]. 金属热处理, 2020, 45(8): 233-239. Zhang Leitao, Zhang Hongxing, Liu Dexin, et al. Research progress on crack formation and control of laser cladding composite coatings[J]. Heat Treatment of Metals, 2020, 45(8): 233-239. [8]李 成, 王玉玲, 姜芙林, 等. 激光功率对超声辅助激光熔覆Al2O3-ZrO2陶瓷力学性能的影响[J]. 金属热处理, 2020, 45(2): 218-224. Li Cheng, Wang Yuling, Jiang Fulin, et al. Effect of laser power on mechanical properties of ultrasonic assisted laser clad Al2O3-ZrO2 ceramic[J]. Heat Treatment of Metals, 2020, 45(2): 218-224. [9]赵盛举, 祁文军, 黄艳华, 等. TC4表面激光熔覆Ni60基涂层温度场热循环特性数值模拟研究[J]. 表面技术, 2020, 49(2): 301-308. Zhao Shengju, Qi Wenjun, Huang Yanhua, et al. Numerical simulation study on thermal cycle characteristics of temperature field of TC4 surface laser cladding Ni60 based coating[J]. Surface Technology, 2020, 49(2): 301-308. [10]张天刚, 张 倩, 姚 波, 等. TC4表面Ni基激光熔覆层温度场和应力场数值模拟[J]. 激光与光电子学进展, 2021, 58(3): 1-15. Zhang Tiangang, Zhang Qian, Yao Bo, et al. Numerical simulation of temperature field and stress field of Ni-based laser cladding layer on TC4[J]. Laser and Optoelectronics Progress, 2021, 58(3): 1-15. [11]Zhang Hui, Zou Yong, Zou Zengda, et al. Effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers[J]. Journal of Rare Earths, 2014, 32(11): 1095-1100. [12]李 霜. 生物Mg-Zn-Ca合金非晶重熔层激光重熔法制备及耐腐蚀性能研究[D]. 湘潭: 湘潭大学, 2019. [13]谭金花, 孙荣禄, 牛 伟, 等. Ni60/h-BN含量对激光熔覆钛基复合涂层组织及性能的影响[J]. 表面技术, 2019, 48(10): 107-115. Tan Jinhua, Sun Ronglu, Niu Wei, et al. Effect of Ni60/h-BN content on microstructures and properties of laser cladding titanium-based composite coatings[J]. Surface Technology, 2019, 48(10): 107-115. [14]高国富, 郭子龙, 李 康, 等. 超声振动辅助Ni60WC25粉末激光熔覆技术[J]. 金属热处理, 2019, 44(1): 172-175. Gao Guofu, Guo Zilong, Li Kang, et al. Ultrasonic vibration assisted Ni60WC25 powder laser cladding technology[J]. Heat Treatment of Metals, 2019, 44(1): 172-175. [15]Zhao Zhuang, Chen Jing, Guo Shuai, et al. Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti-6Al-4V titanium alloy[J]. Journal of Materials Science and Technology, 2017, 33(7): 675-681. [16]Hu Liefeng, Li Jun, Lü Yinghao, et al. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition[J]. Rare Metals, 2020, 39(4): 436-447. [17]韩立影, 陈禹希, 张峻巍. 激光功率对Ni-WC熔覆层组织与性能的影响[J]. 金属热处理, 2015, 40(10): 159-162. Han Liying, Chen Yuxi, Zhang Junwei. The effect of laser power on the microstructure and properties of Ni-WC cladding layer[J]. Heat Treatment of Metals, 2015, 40(10): 159-162. |