[1]康 涛, 郭 杰, 周 伟, 等. 退火温度对冷轧DP980钢力学性能的影响[J]. 金属热处理, 2020, 45(1): 6-10. Kang Tao, Guo Jie, Zhou Wei, et al. Effect of annealing temperature on mechanical properties of cold-rolled DP980 steel[J]. Heat Treatment of Metals, 2020, 45(1): 6-10. [2]张馨月, 冯运莉, 曹 阔. 退火温度对中锰TRIP钢组织和性能的影响[J]. 金属热处理, 2020, 45(7): 23-27. Zhang Xinyue, Feng Yunli, Cao Kuo. Effect of annealing temperature on microstructure and properties of medium manganese TRIP steel[J]. Heat Treatment of Metals, 2020, 45(7): 23-27. [3]谢伟滨, 刘 刚, 罗富鑫, 等. 退火温度对铝青铜微观组织及硬度的影响[J]. 金属热处理, 2020, 45(3): 191-195. Xie Weibin, Liu Gang, Luo Fuxin, et al. Effect of annealing temperature on microstructure and hardness of aluminum bronze[J]. Heat Treatment of Metals, 2020, 45(3): 191-195. [4]堀茂德, 赵镛浩. 铜合金新的退火硬化现象[J]. 金属热处理学报, 1990, 11(3): 48-55, 47. Shi Maode, Zhao Yonghao. On the new anneal-hardening process of copper alloys[J]. Transactions of Materials and Heat Treatment, 1990,11(3): 48-55, 47. [5]Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals[J]. Science, 2006, 312(5771): 249-251. [6]Markovic I, Nestorovic S, Markoli B, et al. Anneal hardening in cold rolled PM Cu-Au alloy[J]. Material Science & Engineering A, 2016, 658: 393-399. [7]Long Y, Gong Y L, Ren S Y, et al. Effects of annealing on mechanical properties in ultrafine-grained Cu-Al alloy[J]. Advanced Materials Research, 2012, 2044: 363-367. [8]Bader M, Eldis G T, Warlimont H. The mechanisms of anneal hardening in Cu-Al alloys[J]. Metallurgical Transactions A, 1976, 7(2): 249-255. [9]Nestorovi S, Markovi D, Markovi I. Influence of thermal cycling treatment on the anneal hardening effect of Cu-10Zn alloy[J]. Journal of Alloys & Compounds, 2010, 489(2): 582-585. [10]Davydov V G, Rostova T D, Zakharov V V, et al. Scientific principles of making an alloying addition of scandium to aluminium alloys[J]. Material Science and Engineering A, 2000, 280(1): 30-36. [11]Gong Y L, Ren S Y, Zeng S D, et al. Unusual hardening behaviour in heavily cryo-rolled Cu-Al-Zn alloys during annealing treatment[J]. Material Science & Engineering A, 2016, 659: 165-171. [12]Zhao L, Xin Y, Guo F, et al. A new annealing hardening mechanism in pre-twinned Mg-3Al-1Zn alloy[J]. Material Science and Engineering A, 2016, 654: 344-351. [13]Xin Y, Zhou X, Chen H, et al. Annealing hardening in detwinning deformation of Mg-3Al-1Zn alloy[J]. Material Science and Engineering A, 2014, 594: 287-291. [14]Naoya K, Huang X X, Nobuhiro T, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Materialia, 2009, 57(14): 4198-4208. [15]Yu C Y, Sun P L, Kao P W, et al. Mechanical properties of submicron-grained aluminum[J]. Scripta Materialia, 2005, 52(5): 359-363. [16]Valiev R Z, Sergueeva A V, Mukherjee A K. The effect of annealing on tensile deformation behavior of nanostructured SPD titanium[J]. Scripta Materialia, 2003, 49(7): 669-674. [17]Jia N, Zhao X, Song D, et al. On the anomalous hardening during annealing of heavily deformed f.c.c. metals[J]. Material Science and Engineering A, 2010, 527(4-5): 1143-1150. [18]Zhang N, Jin S B, Sha G, et al. Segregation induced hardening in annealed nanocrystalline Ni-Fe alloy[J]. Material Science and Engineering A, 2018, 735: 354-360. [19]Vitek J M, Warlimont H. The mechanism of anneal hardening in dilute copper alloys[J]. Metallurgical Transactions A, 1979, 10(12): 1889-1892. [20]Ivana M, Svetlana I, Uro S, et al. Annealing behavior of Cu-7at.%Pd alloy deformed by cold rolling[J]. Journal of Alloys and Compounds, 2018, 768: 944-952. [21]Tao J, Chen G, Jian W, et al. Anneal hardening of a nanostructured Cu-Al alloy processed by high-pressure torsion and rolling[J]. Material Science and Engineering A, 2015, 628: 207-215. [22]Markovic I, Nestorovic S, Markoli B, et al. Study of anneal hardening in cold worked Cu-Au alloy[J]. Journal of Alloys and Compounds, 2016, 658: 414-421. [23]李 鹏, 周世同, 吕潍威, 等. 纳米材料铜锌合金经低温退火出现的硬化现象[J]. 热加工工艺, 2016, 45(4): 199-201. Li Peng, Zhou Shitong, Lü Weiwei, et al, Hardening phenomenon of nano-materials Cu-Zn alloys by low temperature annealing[J]. Hot Working Technology, 2016, 45(4): 199-201. [24]Donoso E, Espinoza R, Dianez M J, et al. Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy[J]. Material Science and Engineering A, 2012, 556: 612-616. [25]Timothy J R, Jason R T, Christopher A S. Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys[J]. Journal of Materials Research, 2012, 27(9): 1285-1294. [26]Yang C F, Pan J H, Lee T H. Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys[J]. Journal of Alloys and Compounds, 2009, 468(1-2): 230-236. [27]孙文声, 张锦麟, 董乐军. 变形Zn-16Al合金退火硬化行为研究[J]. 兵器材料科学与工程, 2010, 33(6): 51-53. Sun Wensheng, Zhang Jinlin, Dong Lejun. Anneal-hardening behavior of as-deformed Zn-16A1 alloy[J]. Ordnance Material Science and Engineering, 2010, 33(6): 51-53. [28]杜 刚, 杨 文, 闫德胜, 等. 铸态Al-Mg-Sc-Zr合金退火过程中的硬化行为[J]. 金属学报, 2011, 47(3): 311-316. Du Gang, Yang Wen, Yan Desheng, et al. Hardening behavior of the as-cast Al-Mg-Sc-Zr alloy[J]. Acta Metallurgica Sinica, 2011, 47(3): 311-316. [29]Taendl J, Orthacker A, Amenitsch H, et al. Influence of the degree of scandium supersaturation on the precipitation kinetics of rapidly solidified Al-Mg-Sc-Zr alloys[J]. Acta Materialia, 2016, 117: 43-50. [30]Gao Z, Li H, Liu J, et al. Effects of ytterbium and zirconium on precipitation evolution and coarsening resistance in aluminum during isothermal aging[J]. Journal of Alloys and Compounds, 2014, 592: 100-104. [31]Costa S, Puga H, Barbosa J, et al. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al-Sc alloys[J]. Materials and Design, 2012, 42: 347-352. [32]Luo Y, Pan Q, Sun Y, et al. Hardening behavior of Al-0.25Sc and Al-0.25Sc-0.2Zr alloys during isothermal annealing[J]. Journal of Alloys and Compounds, 2019, 818: 152922. |