[1]Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging[J]. Materials Science and Engineering A, 2018, 732: 167-177. [2]陈 鼎, 刘 芳, 滕 杰, 等. 深冷处理对低碳钢组织与性能的影响[J]. 金属热处理, 2008, 33(9): 66-69. Chen Ding, Liu Fang, Teng Jie, et al. Effects of deep cryogenic treatment on microstructures of low carbon steels[J]. Heat Treatment of Metals, 2008, 33(9): 66-69. [3]Adem C, Fuat K, Turgay K. Effects of deep cryogenic treatment on the wear resistance and mechanical properties of AISI H13 hot-work tool steel[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4431-4439. [4]Barron R F. Cryogenic treatment of metals to improve wear resistance[J]. Cryogenics, 1982, 22(8): 409-413. [5]Rhyim Y M, Han S H, Na Y S, et al. Effect of deep cryogenic treatment on carbide precipitation and mechanical properties of tool steel[J]. Solid State Phenomena, 2006, 118: 9-14. [6]Li J, Feng Y, Tang L, et al. FEM prediction of retained austenite evolution in cold work die steel during deep cryogenic treatment[J]. Materials Letters, 2013, 100(1): 274-277. [7]Jumov G V K. Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite[J]. Metallurgical and Materials Transactions A, 1976, 109(9): 1148-1156. [8]Mohan L, Renganarayanan K. Cryogenic treatment to augment wear resistance of tool and die steels[J]. Cryogenics, 2001, 41(3): 149-155. [9]刘承杰, 谭 军, 刘 鹏, 等. GCr15钢球阀的深冷处理[J]. 金属热处理, 2016, 41(6): 112-116. Liu Chengjie, Tan Jun, Liu Peng, et al. Cryogenic treatment of GCr15 steel ball valve[J]. Heat Treatment of Metals, 2016, 41(6): 112-116. [10]胡心彬, 李 麟, 吴晓春. 含铌H13钢热疲劳过程中的显微结构变化[J]. 金属热处理, 2005, 30(3): 27-30. Hu Xinbin, Li Lin, Wu Xiaochun. Microstructure changes of H13 hot work tool steel with niobium during thermal fatigue[J]. Heat Treatment of Metals, 2005, 30(3): 27-30. [11]佟 倩, 吴晓春, 周青春, 等. 热作模具钢SDH3热疲劳机理[J]. 材料热处理学报, 2010, 31(5): 81-86. Tong Qian, Wu Xiaochun, Zhou Qingchun, et al. Thermal fatigue mechanism of SDH3 hot work steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(5): 81-86. [12]江 红. 微观组织对热锻模具钢热疲劳性能的影响[D]. 长春: 吉林大学, 2001. [13]Klobar D, Kosec L, Kosec B, et al. Thermo fatigue cracking of die casting dies[J]. Engineering Failure Analysis, 2010, 20: 43-53. [14]魏馥铭, 黄 峥, 朱雅年, 等. 4Cr5MoV1Si钢的热疲劳性能研究[J]. 上海大学学报(自然科学版), 1997, 3(4): 48-56. Wei Fuming, Huang Zheng, Zhu Yanian, et al. Study on the thermal fatigue behavior of 4Cr5MoV1Si steel[J]. Journal of Shanghai University(Natural Science), 1997, 3(4): 48-56. [15]杜忠泽, 符寒光, 杨 军. 变质处理后Fe-V-W-Mo-Cr合金热疲劳性能的研究[J]. 金属热处理, 2006, 31(4): 21-24. Du Zhongze, Fu Hanguang, Yang Jun. Study on the thermal fatigue resistances of Fe-V-W-Mo-Cr alloy modified by RE-Mg[J]. Heat Treatment of Metals, 2006, 31(4): 21-24. [16]赵 玲, 刘光磊, 张思源, 等. 固溶时效深冷复合处理对ZCuAl10Fe3Mn2合金微观组织和热疲劳性能的影响[J]. 材料工程, 2019, 47(12): 63-70. Zhao Ling, Liu Guanglei, Zhang Siyuan, et al. Effect of compound cryogenic treatment on microstructure and thermal fatigue properties of ZCuAl10Fe3Mn2 alloy[J]. Journal of Materials Engineering, 2019, 47(12): 63-70. |