[1]胡海涛. 帽型薄壁梁抗弯性能研究及多目标优化[D]. 大连: 大连理工大学, 2015. Hu Haitao. A research on theoretical prediction method of energy absorption in bending and axial collapses of thin-walled beams with closed-hat section[D]. Dalian: Dalian University of Technology, 2015. [2]张立玲, 林 逸, 高 峰. 不同材料薄壁圆管准静态轴压变形特性[J]. 塑性工程学报, 2010, 17(4): 62-65. Zhang Liling, Lin Yi, Gao Feng. Axial collapsed behavior analysis of thin-walled circular tubes with different materials[J]. Journal of Plasticity Engineering, 2010, 17(4): 62-65. [3]Bilston D, Ruan D, Candido A, et al. Parametric study of the cross-section shape of aluminium tubes in dynamic three-point bending[J]. Thin-Walled Structures, 2019, 136: 315-322. [4]Pirmohammad S, Nikkhah H. Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232(3): 367-383. [5]Duan L, Jiang H, Geng G, et al. Parametric modeling and multiobjective crashworthiness design optimization of a new front longitudinal beam[J]. Structural and Multidisciplinary Optimization, 2019, 59(5): 1789-1812. [6]Fang J, Gao Y, Sun G, et al. On design of multi-cell tubes under axial and oblique impact loads[J]. Thin-Walled Structures, 2015, 95: 115-126. [7]Kathiresan M. Influence of shape, size and location of cutouts on crashworthiness performance of aluminium conical frusta under quasi-static axial compression[J]. Thin-Walled Structures, 2020, 154: 106793. [8]Sun H, Wang J, Shen G, et al. Energy absorption of aluminum alloy thin-walled tubes under axial impact[J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3105-3111. [9]Rosefort M, Baumgart R, Matthies C, et al. Influence of microstructure on the folding behavior of crash relevant aluminum extrusion parts[C]//Light Metals 2014. Springer, Cham, 2014: 201-205. [10]Nguyen-Hieu Hoang, Odd Sture Hopperstad. An improved nano-scale material model applied in axial-crushing analyses of square hollow section aluminium profiles[J]. Thin Walled Structures, 2015, 92: 93-103. [11]张新明, 欧 军, 刘胜胆, 等. 固溶制度对 1933 铝合金自由锻件组织和力学性能的影响[J]. 中国有色金属学报, 2010, 20(1): 30-36. Zhang Xinming, Ou Jun, Liu Shengdan, et al. Effects of solution treatment on microstructure and mechanical properties of 1933 aluminum alloy forgings[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 30-36. [12]王 冠. 铝合金薄壁梁结构轻量化设计及其变形行为的研究[D]. 长沙: 湖南大学, 2013. Wang Guan. Lightweight design and deformation behavior of aluminum thin-walled structure[D]. Changsha: Hunan University, 2014. [13]向 东, 傅定发, 娄 燕, 等. Al-Mg-Si多胞截面型材准静态轴向压缩[J]. 中国有色金属学报, 2012, 22(7): 1843-1854. Xiang Dong, Fu Dingfa, Lou Yan, et al. Quasi-static axial compression of Al-Mg-Si profiles with multi-cell section[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 1843-1854. [14]王 冠, 刘志文, 徐从昌, 等. 诱导孔对铝合金薄壁梁轴向压缩变形行为的影响[J]. 中国有色金属学报, 2016, 26(3): 494-506. Wang Guan, Liu Zhiwen, Xu Congchang, et al. Effect of cut-outs on aail collapse behavior of aluminum with thin-walled structure[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(3): 494-506. [15]Morere B, Ehrström J C, Gregson P J, et al. Microstructural effects on fracture toughness in AA7010 plate[J]. Metallurgical and Materials Transactions A, 2000, 31(10): 2503-2515. [16]Chen S, Chen K, Dong P, et al. Effect of recrystallization and heat treatment on strength and SCC of an Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2013, 581: 705-709. |